CHAPTER SIX 6

MULTIMEDIA & GRAPHICS

- New uses for computer graphics include: Buttons | Charts | Diagrams | Animated images.
 - Challenges of computer images include:
 - 1. Large file size
 - 2. Slow downloads and processing
 - 3. Possible inferior quality from original
 - 4. File format compatibility
 - 5. Images display differently on various monitors and printers.
- TRADITIONAL GRAPHICS:
 - <u>Contone image:</u> Composed of continuously varying shades of color.
 - Line art: Combinations of lines to create images, Uses only two colors.

BITMAPPED GRAPHICS

- Bitmapped graphics ; Created as a pattern of discrete elements AND Each element is a pixel or "picture element."
- Pixels Small squares Assigned a binary code to define color. | More bits = more color possibilities

BITMAPPED IMAGES

- Categories of bitmapped images are:
 - 1. Line art | Produced using two colors usually black and white Advantages Clear, crisp image. AND Small file size Uses include: Charts | Illustrations | Diagrams.
 - 2. Grayscale | Produced using shades of gray, Generally 8-bit images of 256 shades of gray
 - Advantages
 - 1. Excellent representation of black and white photos
 - 2. Smaller files size than full color
 - 3. Lower printing costs than color.
 - 3. Color | Produced with patterns of colored pixels.
 - Consists of a pattern of colored pixels
 - Bit depth: the number of bits used to encode each pixel determines the amount of color possibilities.
 - Photo-realistic color requires 24-bit color.
- <u>Two methods to create color on a computer:</u>
 - 1. Identify a table of possible colors for the computer (Color Lookup Table)
 - 2. Specify varying amounts of Red, Green, Blue.
- Image quality depends on:
 - **1. Spatial resolution = density of pixels per inch.**
 - 2. Color resolution = number of colors each pixel can
- **SPATIAL RESOLUTION**
- Higher spatial resolution Captures more detail. Pixels are smaller and closely packed
 - Produces sharper, more accurate images.
- Lower spatial resolution Captures less detail. Pixels are larger AND Images appear fuzzy.
- High spatial resolutions yield large file sizes but better image quality.

RESAMPLING BITMAPPED IMAGE

- Process of increasing or decreasing the number of samples described in a file.
- Upsampling: adding samples to the file, used to enlarge the physical dimensions of an image on a given device.
- Downsampling: reducing the samples in the image.
- Downsampling: reducing the pixels in the file can produce smaller images that maintain good quality.

COLOR RESOLUTION

- Indexing
 - A specific palette of colors is identified to optimize the appearance of lower color resolution image.
 - Two methods to create the index of colors: Adaptive | Perceptual.
- Dithering
 - Combining pixels of different colors to produce another color not available in the indexed palette.
 - Improves image quality without increasing bit depth.

BITMAPPED IMAGE SOURCES

- Paint programs Specialized software for creating bitmapped images. { Photoshop, Paint. }
- Digital cameras Number of pixels sampled by the camera is the camera's spatial resolution.
- Scanner Capture existing or original art image | Capture 3-D objects.
- Clip art) Royality free | Licensed usage.
- Screen grab: Save image on monitor to a bitmapped file, Spatial resolution is generally low.

VECTOR-DRAWN GRAPHICS

- Vector: a line with length, curvature, and direction.
- Vector graphics: images created from mathematically defined shapes.
- Draw programs: software used to create vector graphics.
- Draw programs use tools that resemble those of a draftsman: Fixed shapes | Bezier curves | Pen.
- VECTOR-DRAWN Main advantages: Images can be enlarged without distortion and Small file size.

VECTOR to BITMAPPED & Back Again

- Autotracing: software analyzes a bitmapped image for shapes and converts the image to a vector graphic.
- Rasterizing: samples the vector image and saves it in bitmapped form.
- VECTOR GRAPHIC FILE FORMATS
- Files are saved in native format or general purpose formats.
 - Native format: dependent on the application.
 - General purpose: can be used in many applications.
 - Vector-only: EPS—Encapsulated Postscript | PDF— Portable Document Format.

- Me	etafiles: SVG—Scalable Vector Format.	
	BITMAPPED (paint) IMAGES	VECTOR (Draw) IMAGES
ADVANTAGES	 Represent complex contones. Full-featured photo editing. Wide range of artistic effects. Precise editing. 	 Smooth scaling and reshaping. Ease of editing objects in layers. Low file size. Device-independent.
DISADVANTAGES	 Large file sizes. Loss of precise shapes when scaled or rotated. Device-dependent. 	 Inaccurate, incomplete representation of complex contone images. No photo-editing capability. Limited artistic control.

<u>3-D GRAPHICS</u> Four interconnected steps in creating 3-D images:

Modeling | Surface definition | Scene composition | Rendering.

STEP 1: MODELING: Process of specifying the shape of the 3-D object.

- Two major approaches to modeling:
 - Combine cubes, cones, cylinders and other 3-D shapes supplied with the graphics program modeling with primitives.
 - Use a modeler to create shapes directly.
- **3-D MODELING**
- Modeling with primitives uses basic shapes to create complex 3-D images.
- Parametric primitives
 - Objects that can be changed by specifying parameters such as radius.
 - Primitives can be scaled, rotated, moved, combined.
 - Constructive Solid Geometry (CSG)
 - Primitives are joined, subtracted from, or intersected with using Boolean operators.
- Four modeling techniques:
 - 1. Polygon modeling
 - 2. Spline modeling
 - 3. Metaball modeling
 - 4. Formula modeling.
- Modelers have ability to:
 - Extrude: extend a 2-D shape through space to create a 3-D object.
 - Lathe: rotate a 2-D line on an axis.

POLYGON MODELING

- Object is defined as pattern of straight-edged polygons.
 - Similar to bitmapped graphics in that the object is defined by fixed number of elements.
 - Fixed number of polygons for 3-D.
 - Fixed number of pixels for 2-D.
- Advantages: High-quality, realistic surfaces, and precise editing control.
- Disadvantages: Large file sizes and scaling distortions.

SPLINE MODELING

- Uses curves to create objects. Similar to 2-D vector graphics.
- NURB approach defines an image using mathematical formulas that can be adjusted to vary size and shape.
- Advantages: Smaller file sizes, more flexible objects, NURBs are easily scaled.
- Disadvantage: Less editing control.

METABALL MODELING

- Creates objects as combinations of elements called blobs.
- Blobs have various shapes and are either positive or negative.
 - Positive blobs add to the object.
 - Negative blobs subtract from the object.

• Metaball technique is good for objects with soft edges. The blobs are smoothed like lumps of clay.

FORMULA MODELING

- Creates objects by specifying mathematical formulas that are drawn by the computer.
- Requires knowledge of programming and advanced mathematics.

STEP 2: SURFACE DEFINITION

- Surface definition: where textures are applied to the model's surface.
 - Menu choices of surfaces include wood, glass, metal, skin.
 - Can vary the appearance of surfaces with color, opacity, reflectivity.
- Custom surfaces include: Image maps | Bumb maps.

STEP 3: SCENE COMPOSITION

- Objects are arranged, backgrounds introduced, environmental effects added, and lighting established.
- Lighting choices in a scene include: Omni lights | Directional lights | Spot lights | Volumetric light.
- Adjust lighting with brightness, color, and attenuation.

STEP 4: RENDERING

- Computer creates the scenes specified by the artist.
- Two main approaches:
 - Pre-rendering Used primarily for still graphics, animation, and video with limited interactivity.
 - Real-time rendering Used for highly interactive 3-D applications such as video games.

GUIDELINES FOR USING GRAPHICS IN MULTIMEDIA

1. Identify purpose of the graphic.

- 2. Choose best format for each image.
- 3. Match graphic design to purpose.
- 4. Locate graphics.
- 5. Preserve image quality.
- 6. Economize.
- 7. Organize and store graphics files for later use.

CHAPTER SEVEN7

Sound is a form of mechanical energy transmitted as vibrations in a medium. Sine wave captures three features of sound:

- Amplitude | Perceived as volume.
 - Frequency | Perceived as pitch.
- Duration | Length of time sound lasts.

DIGITAL SOUND

• Two major types of digital sound:

- Sampled sound: digital recording of previously existing analog sound wave.
- File contains numeric values to describe the amplitude of the sound wave at a particular instant.
- <u>Used to</u> capture and edit naturally-occurring sounds.
- Synthesized sound: new sound generated by the computer.
- File contains instructions the computer uses to reproduce the sound.
 - Used to:
- Create original compositions
- Produce novel sound effects.

<u>Quality of the sampling depends on:</u> Sample resolution | Sample rate.

<u>SAMPLE RESOLUTION:</u> Number of bits to encode amplitude.

SAMPLED SOUND DISTORTIONS

- Quantization: rounding a sample to the closest available value in the code being used.
 - May produce background hissing or grainy sound, Caused by low sample resolution
 - Solution: record at higher resolution Use 16-bit rather than 8-bit to increase the range of amplitudes.

Clipping: wave amplitude exceeds available sample values.

- Causes:
- Recording equipment isn't designed for selected decibel range or
- Mixing tracks with amplitudes that exceed the available range.
- Result is harsh, distorted sound.
- Solutions: Lower amplitude of source sound within the limits of the ADC circuitry, Adjust volume of mixed tracks or use higher sample resolution

SAMPLE RATE :Number of samples taken in a fixed interval of time.

Two measurements capture each cycle of the sound wave:

- 1. High value or peak
- 2. Low value or trough.

SAMPLE RATE DISTORTION

- Aliasing: false representation of high frequencies as low frequencies.
 - Occurs when source frequency is greater than one-half the sample rate being used.
 - Solutions: Apply filters to source sound to eliminate frequencies above the sample rate.

SOUND COMPRESSION

- Psychoacoustics: eliminates frequencies indistinguishable to the human ear.
- Variable bitrate encoding (VBR): alters the number of bits to encode the sample depending on the complexity of the sound.

SAMPLED SOUND FILE FORMATS

- AIFF: Apple Computer | Uncompressed, high quality sound.
- WAV: Microsoft and IBM standard | Uncompressed, high quality sound.
- AU: Sun Microsystems | Internet transmission of lower quality sound files.
- RealAudio: Real Media | Streaming audio at low bandwidths.
- MP3: (MPEG-1, audio layer 3) | Significant compression of high quality sound.
- WMA: Windows Media Audio | Delivers lossy compression comparable to MP3 at lower bitrates.
 - AAC: Advanced Audio Coding | Successor to MP3 specified in the MPEG-4 standard, Produces better quality sound than MP3 standard at comparable bitrates.
- <u>SYNTHESIZED SOUND</u>: Computer sends commands to specialized electronic device called a synthesizer.
- MIDI (Musical Instrument Digital Interface). Most common standard to code commands for synthesizers.
- Sequencer; Device to control the flow or sequencing of the MIDI data to a multitimbral synthesizer.

SAMPLED vs. SYNTHESIZED

- Sampled Advantages: 1. High quality. 2. Ease of creation. 3. Ease of editing. 4. Consistent playback quality.
- Sampled Challenges: 1. Large file sizes. 2. Editing limitations.
- Synthesized Advantages: 1. Exceptional editing control. 2. Small file size.
- Synthesized Challenges: 1. Musical expertise required. 2. Playback quality is not consistent. 3. Not effective for natural sounds and human voice

ADVANTAGES OF DIGITAL SOUND

- 1. Noise reduction
- 2. Recording accuracy
- 3. No generation decay
- 4. Durability
- 5. Random access
- 6. Editing is easier and less expensive
- 7. Easily distributed by: CDs Networks.

Strategies for DELIVERING DIGITAL SOUNDS

- Downloaded audio: transfers the complete audio file from the server to the client.
- Streaming audio: real-time sound that is played as it is being delivered. Not saved on client computer. Progressive downloads: file is saved to client computer, but begins to play from RAM as it is downloading.

GUIDELINES FOR USE OF SOUND

- 1. Identify the purpose of the sound and use it for good reasons.
- 2. Use high-quality sound.
- 3. Conserve file space.
- 4. Consider playback environment.
- 5. Avoid excessive use of sound.
- 6. Organize sound files and preserve original sources.

CHAPTER EIGHT8

DIGITAL VIDEO CHALLENGES

- Large file sizes | Every second of uncompressed digital video requires 30MB of storage.
- Hardware performance | Computer processors, memory and bus size must deliver digital video to the screen at full motion frame rates.
- Distribution methods DVD players | High speed network bandwidth.

DIGITAL VIDEO QUALITY Factors:

- Screen resolution | Number of horizontal and vertical pixels used to present the video image.
- Frame rate | Number of individual video frames displayed per second.
- Compression method | Algorithm used to compress and decompress the video.
- Three strategies for compressing video:
 - 1. Intra-frame: re-encodes within the frame.
 - 2. Inter-frame: eliminates intervening frames saving only changes between the frames.
 - 3. Variable bit rate (VBR)
 - CBR (constant bit rate) assigns same number of bits per second to all parts of the video.
 - VBR assigns more bits to complex scenes and fewer bits to simpler scenes.

<u>Choosing compression depends on:</u>

- Output destination DVD | Internet | Mobile device
- Editing capability Detailed editing tasks | Limited editing tasks
- Type of images in video Complex scenes | Similar scenes

MPEG compression identifies:

- I-frames: "intra-frame" or complete compressed frames
- P-frames: predictive frames record more significant changes.
- B-frames: bidirectional frames record smaller changes between the I and P frame.

COMMON VIDEO CODECS

• MPEG

•

- MPEG-1(short videos on Video CD—optical disc format).
- MPEG-4 (video over the web).
- M-JPEG (less-compressed higher quality files without inter-frame loss)
- Real Video (proprietary codec for streaming video on web)
- Flash Video (popular Internet video standard)
- QuickTime (cross-platform format supporting variety of codecs and screen resolutions)
- Windows Media Video (highly compressed streaming video format from Microsoft)
- SDTV (digital format that uses roughly same resolution as analog TV)
- HDTV (uses 16:9 aspect ration and progressing scanning)
- AVCHD (a variant of MPEG-4 compression recording at 1080i, 1080p, or 720p)
- Motion JPEG 2000 (produces smaller files at higher quality, uses intra-frame compression, visually lossless, lossy or mathematically lossless compression.

Three main steps in creating original digital video: Shooting | Editing | Rendering.

SHOOTING Requires planning for:

- Intended uses of video
- List of shots required
- Weather and lighting conditions
- Availability of personnel

How the video will be integrated in the project.

DIGITAL VIDEO CAMERA CONSIDERATIONS

CCD (Charge-Coupled Device).

- Lenses
- Microphones
- Light Sensitivity
- Storage Media
- File Format
- Number of CCDs
 - One CCD: Light is filtered and level of each filtered color is recorded.
 - Three CCDs: Light is split into three channels and each CCD records separate levels of RGB.
- Resolution of CCD: Higher resolution delivers more accurate images.
- Microphones: placement, type, and quality.
 - Omni-directional: optimized for broad range of background sound.
 - Unidirectional: record from narrowly defined location.
- Storage Media
 - Таре
 - Advantages:
 - 1. Inexpensive archive format
 - 2. DV and HDV formats are well-established.
 - Disadvantages:
 - 1. Sequential access is demanding on tape
 - 2. Transfer of video to another device is time consuming.
 - Optical media & Solid state media
 - Random access to video
 - Rapid transfer from camera
 - Light weight, low power consumption, ease of exchange and transport.
 - Declining costs and increased capacities
 - File Format: Source video footage should be captured at highest resolution possible and not be highly compressed.
 - DV format:
 - Limits compression to 5:1
 - Has relatively high resolution
 - Uses M-JPEG compression.
 - HD & 3D format:

.

- New formats are emerging.
 - HD formats can increase processor demand during editing if using inter-frame compression.

SHOOTING BASICS

- Framing a Shot
 - Rule of thirds—widely embraced guideline for framing a video shot.
 - Preserves its interest.
 - Meaningfully relates it to action taking place.
 - Helps ensure adequate side and headroom.
- Minimize camera motion.
 - Use tripod or steady surface to support camera.
 - Keep the camera still at all times.

تُقى | By@TOKA_AKRAD

Camera controls for generating motion:

- Pan—moving side to side.
 - Zoom—enlarge camera lens.

• Take care of time code.

- Format of hours, minutes, seconds, frames.
- Time code becomes the frame address.

Type of Shots:

•

- Close up shot (CU)
- Medium shot (MS)
 - Point of view shotReverse angle shot
- Wide shot (WS)Establishing shot
- Over-the-shoulder shot

Cutaway

STEP TWO: EDITING

- Editing software options:
 - Consumer packages.
 - Prosumer applications.

Specialized video and film production.

- Digital Video Major Task (Features):
 - Capture video from external source.
 - Arrange separate video clips.
 - Split and trim clips.
 - Add transitions and special effects.

CAPTURE/IMPORTING VIDEO

- Transfer video from camera to computer through USB, FireWire, or Thunderbolt connection.
- Transfer includes:
 - Video images & audio
 - Time Code
 - Date Stamp
 - Scene Detection
 - Geotagging
- Editing software can use changes in data to identify different recording sessions.
- Master video: is a series of instructions and pointers for performing operations on the original source footage.

EDITING SOFTWARE

- Preview window | Shows source video.
- Library window | Lists clips transferred to the computer.
- Construction window | Presents assembled clips.
- Timeline | Shows duration of video's multiple tracks.

EDITING OPERATIONS

- Splitting: dividing clip into multiple parts.
- Trimming: removing unwanted frames from clips.
- Transitions: effects to move into or out of a clip. These include:
 - 1. Cut 2. Fades 3. Dissolve 4. Wipe.

STEP THREE: RENDERING

- Process of applying the editing operations specified by the master video to produce a new, independent video file.
 - Can be processor intensive and time consuming process.
 - Output options are based on video's intended use. These include:
 - 1. Video compression method
 - 2. Resolution or screen size
 - 3. Frame rate and video data rate
 - 4. Audio data rate and audio format.

RENDERING DECISIONS

٠

٠

- Choice of a codec.
 - All video must be compressed.
 - Choice will determine quality of resulting video.
 - Variable bit rate encoding better than constant bit rate.
 - Choice of frame rate.
 - Impacts size of video file.
 - Web video must be significantly reduced for a wide viewing audience.
 - Choice of audio compression and data rate.
 - If file size is not critical, use PCM format.
 - Also widely used are MP3 and Dolby Digital AC-3 formats.
 - Choice of computer hardware.
 - Video complexity could make render time over 1 hour per minute of video.
 - CPU speed, amount of RAM, size of hard drive can save you time.
 - Multi-core processors and distributed processing can also reduce the time for rendering.

GUIDELINES FOR VIDEO Shooting:

- Choose camera carefully.
- Steady the camera.
- White balance prior to shooting.
- Avoid shooting into light and backlit scenes.
- Limit pans and zooms.
- Frame the subject.
- Make inventory of required shots.

GUIDELINES FOR VIDEO Editing:

- Protect source video.
- Save a copy of the master video prior to rendering.

GUIDELINES FOR VIDEO Rendering

- Match codec, resolution, frame rate, and data rate to intended use and delivery medium.
- Use variable bit rate encoding when available.

CHAPTER NINE9

Animation: rapidly displayed sequence of individual, still images.

Early animating devices: Thaumatrope | Zoetrope.

Flipbook technique: Still images showing a different stage of motion are created on each page, Pages are "flipped" in rapid succession to view the motion.

Animation basics used in flipbook:

- <u>Quality</u> of motion is based on rate of display.
- <u>Speed</u> is based on differences between images.
- <u>Onionskinning</u>: a technique used to draw new image based on the previous image.
- Registration: physically aligns images with one another.

TRADITIONAL ANIMATION

- Film based process
- Images are photographed and recorded as separate frames on long strip of transparent film.
- Film passed in front of light source and animation appeared on a screen.
- Film enhanced possibilities of animation.
- Multiple reels allowed longer animations.
- Projectors displayed images at reliable frame rates.
- Animators could add sound to the motion.

CHALLENGES OF TRADITIONAL ANIMATION

- Number of images to create.
- 24 frames per second requires 1,440 individual still images for each minute of animation.
- Methods to generate images include:
 - Shooting on twos cuts number of images in half.
 - Cycle of images can be reused to extend repetitive motion.
 - <u>Holds</u> produce sequence of identical drawings to extend a particular state or action.
 - Artistic strategies to create realistic world require:

Awareness of how things move in the world.

- Ease-in and ease-out address the physics of motion.
- Overshooting a resting point addresses kinetic energy of motion.
- Different components of objects move independently of one another (overlapping motion).
- Exaggerate motion for dramatic effect using:
 - Variations in speed
 - Stretch and squash.

Traditional Techniques

- Strategies for achieving motion have been applied to:
- Paper cut-outs | Clay figurines | Puppets | Natural objects photographed, reposed and re-photographed.
 <u>LANIMATION</u>
- Perfected and made popular by Disney studios.
 - Cel: drawings of individual frames made on sheets of celluloid.
- Drawings were then photographed to produce the animated film.
- Technique that directly influenced development of digital animation.

CEL ANIMATION Advantages

- Artists saved drawing time.
 - Fixed components of a scene were drawn once and layered on the bottom of a stack of celluloid sheets.
 - Moving components were drawn separately and placed on top of the fixed scene components.
 - Gave precise control over elements.
 - Individual cel layers could reproduce interdependent, complex motions.
 - Encouraged division of labor and promoted high artistic standards.
 - Master artists drew key frames or extremes.

- Use highest resolution available.
- Add external microphones.
- Use headphones to monitor sound quality.
- Record background sound for use in editing.
- don't break the time code.

Additional specialists included:

Producers | Directors | Script writers | Audio specialists | Camera operators | Checkers.

PRODUCING CEL ANIMATION

- Cost and complexity of creating animation required a carefully defined process.
- Storyboard: sequence of drawings that sketch out content of major scenes in the production.
- Pencil test: series of simple sketches that are photographed and projected to test the design of the animated sequences.
- Scratch track: draft of animation's audio track.
- Leica reel: working draft of the complete animation.
- Uses specialized equipment in production process.
 - Specialized paints to convey proper hue.
 - Specialized camera and lighting to capture cels.
 - Devices to:
 - Track changes in paths of animated characters.
 - Align and hold the cels for camera shots.
 - Synchronize and edit the final film.
- Cel animation is complex, demanding, and expensive animation.
- Computers dramatically improved the process.

DIGITAL ANIMATION

TWO DIFFERENT FORMS:

- 2-D evolved from traditional animation techniques.
- 3-D exploited capabilities unique to the computer.

2-D ANIMATION

- Produced by mimicking basic traditional techniques such as:
 - Flipbook technique
 - Cutout animation technique
 - Rotoscoping
 - Cel animation.
- Paint/draw programs are used to create the components.
- Animation software can sequence, set timing, transitions, and produce the final animation.

Elements of Flash organization.

- Timeline: horizontal row of frames.
- Frames: have multiple layers in columns.
- Keyframes: define major changes in a frame.
- Tweens: frames created automatically by software.
- Onionskinning: assists in drawing changes from one frame to the next.
- Frame-by-frame animation: each frame is manually drawn to reflect motion sequence.
- <u>Tween animation:</u> computer generates in-between frames based on two designated key frames.
- Provide tools to support animation process.
 - Image-editing tools
 - Alignment tools and grids to control placement
 - Text tools
 - Basic sound control
 - Strategies to support interactivity.

PROGRAMMED ANIMATION

- Animators write commands and the computer generates the animation.
- Requires knowledge of programming and mathematical techniques to specify motion.
- Advantages:
 - File sizes are smaller.
 - Animations load and play faster.
 - Reduces bandwidth and processor demands.
 - Efficient creation of different versions of animated sequence.
- Scripting languages frequently used to generate programmed animations: Lingo | ActionScript | JavaScript.

Elements of 3-D animation set in motion include: Objects | Sounds | Cameras | Lights.

Techniques of 3-D animation: Key frame | Tween motion.

MOTION CAPTURE: Also called performance animation. Technique of recording motion of actual objects and mapping these motions to a computer-generated animated character AND Used to capture complex natural motions that are difficult to create.

- FORWARD KINEMATICS
- Kinematics is study of motion of bodies or systems of bodies.
 - The motion of one part generates related motion in others.
 Animator must adjust all motion in all related parts of the body.
 - Simple to implement.
 - Models easily defined.
 - Computer processing is minimal.
 - Quality of motion depends on animator's skill.
 - Animation is time consuming process.

INVERSE KINEMATICS

- Motion of one body part produces related motions in other body parts.
 - Simplifies animator's work and ensures consistent, realistic motion.
- Software embodies the knowledge of anatomical motion.
- Requires innovative programming.
 - Demands more processing power than forward kinematics.
- Significantly reduces work of animator.

COMPLETING THE ANIMATION

- Rendering creates the final animation frames by applying:
 - The modeling
 - Surface definition
 - Scene composition as specified by animator.

RENDERING OPTIONS

- Pre-render: Requires enormous processing resources and time for animated movies.
- Render in real time: Computer produces animation immediately, Used in video games and highly interactive 3-D animations.

ANIMATION TIPS & GUIDELINES

- Prepare for a learning curve: Animation programs are more difficult to master.
- Design for delivery: Minimize file size if delivery is for Web.
- Consider clip animation to reduce costs.
- Consult the tradition in developing motion.
 - Cycles, holds, shooting on twos, tweening, stretch and squash, ease in & ease out, overshoot & overlap motion are traditional techniques.

CHAPTER TEN 10

METHODS TO INTEGRATE MEDIA

- Programming
 - 1. Languages specify how the media is presented and user interactions carried out.
 - 2. Requires command of the language.
 - 3. Is time consuming.
- Authoring
- Applications specially designed to integrate and present media elements.
- Developers can concentrate on design, interactivity, and functionality of the project.

AUTHORING APPLICATIONS

- Software designed for creation of multimedia projects.
- Applications are used to:
 - Assemble media elements | Synchronize content | Design user interface | Provide user interactivity.
- **AUTHORING METAPHORS**
- Authoring applications are grouped around three metaphors: Card | Icon | Timeline.
- Metaphors help orient developer to how the software organizes the media, sequences events, and presents final project.

CARD METAPHOR

- Media is organized in sequential order on a stack of cards or slides.
 - Appropriate for static media that is normally experienced in sequence.
- <u>Cards have two layers:</u>
 - Background layer contains shared elements. Foreground layer contains content specific to that card or slide.
- Benefits of card layers.
 - 1. Background content is created once which saves development time.
 - 2. Common background layer provides consistent design.
 - 3. File sizes are minimized by sharing background elements.
- **ICON METAPHOR**
- Icons define media and forms of interactivity.
- Icons are placed on a flowline to create the application structure.
- Flowline is a graphical representation of the relationships between components of the application.
- **TIMELINE METAPHOR**
 - Organizes media and interactivity as sequence of frames.
 - Each frame can have multiple layers.
 - Layers define the stacking order of the content to be displayed.

APPLICATION DESIGN

- Authoring software supports the design process.
- <u>Storyboard</u> is a series of screen sketches to guide development process.

CREATE AND EDIT CONTENT

- All authoring applications include some tools for creating and editing media content. For example:
 - Text adjustments to font size and color.
 - Paint tools to add shapes and edit image features.
 - Sound adjustment on volume, duration.
 - Animation changes to speed and direction.

ESTABLISHING NAVIGATION

- Authoring software can establish the order of the content on playback.
- Basic navigation structures include: Linear or sequential | Hierarchical | Networked | Conditional.
- PROGRAMMING

٠

- Provides more flexibility and control.
 - For projects with extensive interactivity, custom features.
- Two programming methods.
 - <u>Script</u>: series of commands specifying properties or behavior of an element in the project.
 - Commands are *interpreted* as the project is executed.
 - Icon: dialog boxes allow the developer to specify parameters for icon's use.
- Does not require programming knowledge but does limit commands to icon parameter

• <u>Debugger tools</u> can identify errors in program code.

PROJECT DELIVERY: Projects are published so they play outside the authoring environment.

- <u>Two approaches to publishing.</u>
 - Remote delivery ; Store the application and data on a server for access through a network, most often the WWW.
 - Local installation ; Application is installed and maintained on user's device.
 - Remote delivery through a network connection.
 - Advantages:
- 1. Content revisions are managed by server database.
- 2. Wide market access
- 3. Developer can track users and determine patterns of usage.
- Limitations:
- 1. Bandwidth restrictions may apply depending on user's location or network service.
- 2. Browser applications are not uniformly compatible with all devices or applications.
- Local installation on user device.
 - Advantages:
- 1. Project does not require constant connection to a network.
- 2. Developer can incorporate larger data files within the application.
- Disadvantages:
 - 1. Platform dependency.
 - 2. Version control and critical updates are user dependent.
 - 3. Inability to track demographics and patterns of use.

Local Delivery approaches:

- Project requires a separate player program to present the multimedia content, Flash, and MediaPlayer programs.
- Project embeds the player in the multimedia project, Larger files, but project is a stand-alone application.

CHOOSING AN AUTHORING APPLICATION

No single authoring tool is suitable for all projects. To select the right application:

- Consider the subject (static or dynamic media).
 - Consider the media (source file formats compatible).
 - Consider delivery (where used, means of distribution).
 - Consider maintenance (expertise needed to revise content, frequent update cycles).

CHAPTER ELEVEN 11

Multimedia development requires:

- <u>Team members</u> provide specialized knowledge of media creation.
- Plan defines the set of tasks and procedures needed for successful project development.

DEVELOPMENT TEAM

- Team of experts is important for project.
- Development is both:
 - Interactive—team members share expertise and ideas during the development cycle.
 - Iterative—revisions result from development feedback.

TEAM MEMBERS

- Project manager: Responsible for delivering the product with promised features, on time, and on budget.
- Project designer: Responsible for overall structure of content, the look, feel, and functionality of user interface.
- <u>Content expert</u>: Has detailed understanding of the topic.
- <u>Writers</u>: Create original text for the project, Provide written requirements of the project such as documentation, contracts, help screens, Technical writing skills are useful.

MEDIA SPECIALISTS: Responsible for preparation of individual elements in a multimedia application.

- <u>Graphics specialist</u> Artists skilled in design principles and most current digital technology.
- Sound specialist: Trained in traditional sound production and has a working knowledge of a sound studio.
- <u>Animation artist</u>: Understands the principles of composition and color and can produce drawings, Understands the elements of motion and can envision action sequences.
- Video specialist Videographers who have knowledge of film techniques, writing, sound, and digital video production and editing.
- Programmer: Responsible for computer code that unites the media elements and provides the product's functionality.
- <u>Acquisitions Specialist:</u> Knowledgeable about sources for copyright-protected content and process of securing permissions, Establishes agreements to protect the creative work of the project developers.

DEVELOPMENT PLAN Addresses three essential tasks: Definition | Design | Production. STAGE 1: DEFINITION

- Identify project goal or purpose. : What should the application accomplish?
- Identify the audience. : Who are the intended users?
- Identify role of multimedia in this project.
 - Advantages of multimedia to accomplish goal.
 - Media elements it requires.
 - Forms of interactivity to provide.
 - Delivery method and cost estimate.

KEY DOCUMENTS IN STAGE 1

- Preliminary Proposal Short description of the proposed application.
 - Includes project goal, audience, outcomes, description of media, types and uses of interactivity, preliminary cost estimate.
 - Often includes a flowchart. : A simple box diagram with brief descriptions of product contents.

<u>Storyboard</u>

- Series of sketches of major screens.
- Rough drawings of media elements such as photos, animations, or videos are sketched in.
- Navigational aides are identified.
- Used to:
 - 1. Communicate with the client during the definition stage
 - 2. Communicate project goals and requirements to the development team.
- <u>Functional specification</u>
 - Detailed description of the elements and performance of multimedia project.
 - Basis of a detailed business contract.
 - Developer and client understanding of what has been promised and the procedures to follow if changes are made in specifications.

STAGE 2: DESIGN

- Purpose is to create an incomplete working model of the project—prototype.
- Media Creation
- Required media identified in a content inventory list.
- Media preproduction, production, postproduction are carried out.

Goal of interface design is to engage the user.

- Features of user interface
 - Intuitive: Immediately understood by the user, Common strategy is to use a metaphor.
 - Consistent: Common backgrounds and consistent location of user controls.
 - Predictable and reliable: Similar actions should produce similar results, Identical actions produce identical results.

<u>PROTOTYPE:</u> An incomplete working model of the final product.

Functions of prototype:

- 1. Refine the definition of the product
- 2. Test proposed features
- 3. Guide further work of team members.
- prototype Used to test the product itself.
 - 1. Test proposals.
 - 2. Test assumptions of definition and design stage.
 - 3. Test product to see if it performs as anticipated.
 - 4. Test navigation of product.
 - 5. Obtain internal and external product review.

STAGE 3: PRODUCTION: Remaining elements of product are created and integrated into the application.

1. Includes quality assurance testing with bug reports and corrective measures.

- Alpha version: includes most media elements but also many "bugs."
 - Beta version: includes all media but still has a few bugs.
 - Gold master: complete, bug-file application.
- 2. Completion of release notes, manuals, and packaging.
- 3. Project materials are systematically archived.

CHAPTER TWELVE 12

<u>Code of ethics</u> is a statement of obligations and standards that define a practitioner's professional responsibilities. <u>GENERAL PRINCIPLES ACM/IEEE CODE OF ETHICS</u>

- The "Public" Principle: "Software engineers shall act consistently with the public interest."
- The "Client and Employer" Principle: "Software engineers shall act in a manner that is in the best interests of their client and employer, consistent with the public interest."
- The "Product" Principle: "Software engineers shall ensure that their products and related modifications meet the highest professional standards possible."
- The "Judgment" Principle: "Software engineers shall maintain integrity and independence in their professional judgment."
- The "Management" Principle: "Software engineering managers and leaders shall subscribe to and promote an ethical approach to the management of software development and maintenance."
- The "Profession" Principle: "Software engineers shall advance the integrity and reputation of the profession consistent with the public interest."
- The "Colleagues" Principle: "Software engineers shall be fair to and supportive of their colleagues."
- The "Self" Principle: "Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote an ethical approach to the practice of the profession."

THE COPYRIGHT TRADITION RIGHTS | REMEDIES | EXCEPTIONS

DEVELOPERS AND COPYRIGHT.

- Reasons multimedia developers need to understand the copyright laws.
 - They must guard against intentional or unintentional violation of the rights of others.
 - Developers must protect their own work.
 - Developers must frame agreements with the client to specify copyright ownership.

COPYRIGHT PROTECTION

<u>Copyright is</u> a form of legal protection given to creators of "original works of authorship. AND THE Purpose of copyright protection is cultural advancement.

Copyright differs from patent protection.

- a. Copyright applies to original or creative expression.
- b. Patent protects original inventions.

Owner of a copyright has five major rights:

- 1. To reproduce the copyrighted work.
- 2. To produce derivative works.
- 3. To distribute copies to the public.
- 4. To perform the work publicly.
- 5. To display the work publicly.
- Protection is granted for set period of time.
 - Works created after 1978 extend to life of creator + 70 yrs.
 - Corporate rights extend 95 yrs. from date of publication or 120 years from creation, whichever comes first.
 - <u>Copyright registration is required if:</u>
 - Lawsuits are being filed for infringement.
 - Statutory damages and attorneys' fees are involved.
 - COPYRIGHT REGISTRATION
 - <u>Registration</u>: Provides evidence of copyright claim, Establishes basis for legal enforcement.
 - Infringement can lead to:
 - Injunctions to prohibit further production and distribution.
 - Compensation for monetary damages.
 - Statutory damages and criminal sanctions.

COPYRIGHT EXCEPTIONS

- Public Domain
- Works for which copyright has expired.
- Works where it was never applied such as: Government documents, Works not in fixed form.

Fair Use A doctrine intended to advance important social goals.

- Free and open press
- Education
- Research and scholarship.

FAIR USE CRITERIA

- 1. Purpose and character of the use.
- 2. Nature of the copyrighted work.
- 3. Amount and significance of the portion used.
- 4. Effect of the use on the value of the work.

Fair use is likely to be found for uses that:

- 1. Are non-profit.
- 2. Are factual rather than creative.
- 3. Use small amounts of the work.
- 4. Have little or no effect on the value or potential market of the work.

COPYRIGHT AND DIGITAL MEDIA

- Copyright law was developed in age of analog media, Media was more difficult to copy and distribute in analog form.
 - Digital versions of media pose challenges to traditional protections.
 - Easy to copy in full fidelity.
 - Editing tools easily generate derivative works that are difficult to detect.
 - Public display rights are threatened by Web technologies.
 - **Responses** to preserving copyright and digital media:
 - Strengthen and improve enforcement of existing legal protections.
 - Develop new strategies within the digital media itself to protect content.
- Digital Rights Management: The application of digital technologies to the management of intellectual property (IP).

DIGITAL RIGHTS MANAGEMENT

- Applied to many forms of intellectual property (IP) including:
 - Patents
 - Corporate reports and communications
 - Creative works traditionally covered by copyright (analog "legacy media")
 - Original digital media.
- Contract law also protects creative works.
 - Owners of creative works can sell a license to use the product.
 - End User License Agreements (EULAs) are popular for software programs and in use with digital books or "ebooks."

USES OF DRM

- DRM has often focused on rights of content owners.
- Commonly used to control copying and accessing digital content.
 - Adobe "eBooks"
 - Content Scrambling System (CSS)
 - Audio CDs (Sony BMG)
 - Music sold on the Web.
- Digital Millennium Copyright Act (DMCA) reinforced DRM copy/access protections.

DIGITAL MILLENNIUM COPYRIGHT ACT

- DMCA contains provisions that directly affect the work of digital media professionals.
- The DMCA has generated controversy:
 - 1. Potential abuse of copyright claims
 - 2. Limitations on fair use
 - 3. Discouragement of research
 - 4. Stifling of creative expression.

Two Generations of DRM

First Generation: a "prevent and protect" strategy intended to limit access to, and use of, digital media.

• Second Generation: a "respect and promote" strategy to facilitate legal distribution and use of digital media.

Elements of Second Generation DRM

- 1. Rights description, validation, and record keeping
- 2. Media access
- 3. Trading
- 4. Implementing/monitoring rights usage
- 5. Tracking.

DRM and Digital Watermarks

• Digital watermarks - alterations to a media file that encode information about the file. For instance:

- 1. Copyright ownership
- 2. Identity of creator
- 3. Identity of purchasers of copyright.
- Used to enforce copyright but also may support broader goals of "Second Generation" DRM.

Benefits of Second Generation DRM

1. New compensation models for creators of media (Magnatune)

- 2. New methods of distribution (Weed)
- 3. Less expensive, more efficient access to copyright permissions
- 4. More flexible permission and licensing options.

Promoting Second Generation DRM

• Creative Commons:

Goals:

- 1. Share knowledge and creativity with the world
- 2. Encourage creation of a common digital culture where creative works are readily available for use by others.
- Open Source Initiative: A standards body to promote development, distribution, and maintenance of open source software.
- Open Source Initiative key features:
 - 1. Free redistribution of software.
 - 2. Access to the source code for modification.
 - 3. Ability to create derivative works , i.e. develop other software based on the original source code.