CH1

Major sources of abundant data

- Business: Web, e-commerce, transactions, stocks, ...
- **Science:** Remote sensing, bioinformatics, scientific simulation, ...
- Society and everyone: news, digital cameras, YouTube

Data mining (knowledge discovery from data)

Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially</u> useful) patterns or knowledge from huge amount of data

Knowledge Discovery (KDD) Process:

- Data Cleaning
- Data Warehouse
- Task-relevant Data
- Data Mining
- Pattern Evaluation

Data Mining in Business Intelligence

- Data Sources
- Reporting Data, Preprocessing/Integration, Data Warehouses
- Data Exploration
- Data Mining
- Data Presentation
- Decision Making

KDD Process: A Typical View from ML and Statistics

- Input Data
- Data Pre-Processing
 - Data integration
 - Normalization
 - ❖ Feature selection
 - Dimension reduction
- Data Mining
 - Pattern discovery
 - **❖** Association & correlation
 - Classification
 - Clustering
 - Outlier analysis
- Post-Processing
 - ❖ Pattern evaluation
 - Pattern selection
 - Pattern interpretation
 - Pattern visualization
- Pattern Information Knowledge

Multi-Dimensional View of Data Mining:

Data to be mined

■ Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

■ Knowledge to be mined (or: Data mining functions)

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Descriptive vs. predictive data mining
- Multiple/integrated functions and mining at multiple levels

■ <u>Techniques utilized</u>

■ Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

Applications adapted

■ Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Data Mining Function:

- Generalization
- Association and Correlation Analysis
- Classification
- Cluster Analysis
- Outlier Analysis

Why Confluence of Multiple Disciplines?

- Tremendous amount of data
- High-dimensionality of data
- High complexity of data
- New and sophisticated applications

Outlier analysis Outlier: A data object that does not comply with the general behavior of the data Applications of Data Mining:

- Web page analysis
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis
- Data mining and software engineering
- From major dedicated data mining systems/tools

Major Issues in Data Mining:

- Mining Methodology
- User Interaction
- Efficiency and Scalability
- Diversity of data types
- Data mining and society

CH2

Types of Data Sets:

- **Record:** Relational records, Data matrix, Document data: text documents: term frequency vector, Transaction data
- **Graph and network:** World Wide Web, Social or information networks, Molecular Structures
- Ordered: Video data: sequence of images, Temporal data: time-series, Sequential Data, transaction sequences, Genetic sequence data
- Spatial, image and multimedia: Spatial data: maps, Image data, Video data.

Important Characteristics of Structured Data:

- **Dimensionality:** Curse of dimensionality
- Sparsity: Only presence counts
- **Resolution:** Patterns depend on the scale
- **Distribution:** Centrality and dispersion

Data Objects:

- Data sets are made up of data objects.
- A data object represents an entity.
 - Examples: sales database, medical database, university database
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes

<u>Attribute (or dimensions, features, variables):</u> a data field, representing a characteristic or feature of a data object.

■ E.g., customer_ID, name, address

Discrete vs. Continuous Attributes:

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
 - Sometimes, represented as integer variables
- Continuous Attribute
 - Has real numbers as attribute values
 - Continuous attributes are typically represented as floating-point variables

Graphic Displays of Basic Statistical Descriptions:

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane Histograms Often Tell More than Boxplots

Attribute Types:

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Why data visualization?

- Gain insight into an information space by mapping data onto graphical primitives
- Provide qualitative overview of large data sets
- Search for patterns, trends, structure, irregularities, relationships among data
- Help find interesting regions and suitable parameters for further quantitative analysis
- Provide a visual proof of computer representations derived

Categorization of visualization methods:

- Pixel-oriented visualization techniques
- Geometric projection visualization techniques
- Icon-based visualization techniques
- Hierarchical visualization techniques
- Visualizing complex data and relations

Dimensional Stacking:

- Partitioning of the n-dimensional attribute space in 2-D subspaces, which are 'stacked' into each other
- Partitioning of the attribute value ranges into classes. The important attributes should be used on the outer levels.

InfoCube:

- A 3-D visualization technique where hierarchical information is displayed as nested semitransparent cubes
- The outermost cubes correspond to the top level data, while the subnodes or the lower level data are represented as smaller cubes inside the outermost cubes, and so on

Visualizing Complex Data and Relations:

- Visualizing non-numerical data: text and social networks
- Tag cloud: visualizing user-generated tags
- Besides text data, there are also methods to visualize relationships, such as visualizing social networks

Similarity and Dissimilarity:

- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

CH3:

Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - **■** Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing:

- Data cleaning
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- **■** Data integration
 - Integration of multiple databases, data cubes, or files
- Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class

Noise: random error or variance in a measured variable

Incorrect attribute values may be due to

- faulty data collection instruments
- data entry problems
- data transmission problems
- technology limitation
- **■** inconsistency in naming convention

How to Handle Noisy Data?

- Binning
- Regression
- Clustering
- Combined computer and human inspection

<u>Data integration:</u> Combines data from multiple sources into a coherent store

Data reduction: Obtain a reduced representation of the data set that is much smaller in volume

but yet produces the same (or almost the same) analytical results

Why data reduction?

A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.

Data reduction strategies:

- Dimensionality reduction, e.g., remove unimportant attributes
- Numerosity reduction (some simply call it: Data Reduction)
- Data compression

What Is Wavelet Transform?

■ Decomposes a signal into different frequency subbands

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

Clustering: Partition data set into clusters based on similarity, and store cluster representation.

Sampling: obtaining a small sample s to represent the whole data set N

Types of Sampling:

- Simple random sampling
- Sampling without replacement
- Sampling with replacement
- Stratified sampling:

<u>Data Transformation:</u> A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values

- Data Transformation Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction: New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Discretization: Divide the range of a continuous attribute into intervals

- Discretization methods:
 - Binning: Top-down split, unsupervised
 - Histogram analysis: Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation (e.g., χ²) analysis (unsupervised, bottom-up merge)

CH4:

What is a Data Warehouse?

- A decision support database that is maintained separately from the organization's operational database
- Support information processing by providing a solid platform of consolidated, historical data for analysis.
- A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process.

OLTP	(On-line Transaction	n Processing) vs. OLAP	(On-line Analy	tical Processing)
-------------	----------------------	------------------------	----------------	-------------------

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Why a Separate Data Warehouse?

- **■** High performance for both systems
- Different functions and different data

Three Data Warehouse Models:

- Enterprise warehouse: collects all of the information about subjects spanning the entire organization
- Data Mart: a subset of corporate-wide data that is of value to a specific group of users. Its scope is confined to specific, selected groups, such as marketing data mart
- Virtual warehouse: A set of views over operational databases

Extraction, Transformation, and Loading (ETL):

- Data extraction: get data from multiple, heterogeneous, and external sources
- Data cleaning: detect errors in the data and rectify them when possible
- Data transformation: convert data from legacy or host format to warehouse format
- Load: sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions
- Refresh: propagate the updates from the data sources to the warehouse

Meta data is the data defining warehouse objects.

A data warehouse is based on a multidimensional data model which views data in the form of a data cube

Conceptual Modeling of Data Warehouses:

- Star schema: A fact table in the middle connected to a set of dimension tables
- <u>Snowflake schema</u>: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
- Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Data Cube Measures: Three Categories:

- Distributive: E.g., count(), sum(), min(), max()
- Algebraic: E.g., avg(), min_N(), standard_deviation()
- Holistic: E.g., median(), mode(), rank()

Typical OLAP Operations:

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: *project and select*
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

Four views regarding the design of a data warehouse:

- Top-down view: allows selection of the relevant information necessary for the data warehouse
- Data source view: exposes the information being captured, stored, and managed by operational systems
- Data warehouse view: consists of fact tables and dimension tables
- Business query view: sees the perspectives of data in the warehouse from the view of end-user

Typical data warehouse design process

- Choose a business process to model, e.g., orders, invoices, etc.
- Choose the *grain* (atomic level of data) of the business process
- Choose the dimensions that will apply to each fact table record
- Choose the measure that will populate each fact table record

Data Warehouse Usage (applications):

- Information processing: supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
- Analytical processing: multidimensional analysis of data warehouse data
- Data mining: knowledge discovery from hidden patterns

Why online analytical mining?

- High quality of data in data warehouses
- Available information processing structure surrounding data warehouses
- OLAP-based exploratory data analysis
- On-line selection of data mining functions

OLAP tools

ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools

CH5:

<u>Properties of Proposed Method:</u>

- Partitions the data vertically
- Reduces high-dimensional cube into a set of lower dimensional cubes
- Online re-construction of original high-dimensional space
- **■** Lossless reduction
- Offers tradeoffs between the amount of pre-processing and the speed of online computation

Intra-Cuboid Expansion

- Combine other cells' data into own to "boost" confidence
- Cell segment similarity
- Cell value similarity

Four ways to interact OLAP-styled analysis and data mining

- Using cube space to define data space for mining
- Using OLAP queries to generate features and targets for mining, e.g., multi-feature cube
- Using data-mining models as building blocks in a multi-step mining process, e.g., prediction cube
- Using data-cube computation techniques to speed up repeated model construction

CH6:

- \blacksquare support, s, probability that a transaction contains $X \cup Y$
- confidence, c, conditional probability that a transaction having X also contains Y

<u>Frequent pattern:</u> a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set

Applications :Basket data analysis, cross-marketing, catalog design, sale campaign analysis,
 Web log (click stream) analysis, and DNA sequence analysis.

<u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested!

<u>Closed pattern:</u> is a lossless compression of freq. patterns

An itemset X is closed if: X is frequent and there exists no super-pattern Y > X, with the same support as X

An itemset X is a max-pattern if: X is frequent and there exists no frequent super-pattern Y > X (proposed by

When minsup is low:, there exist potentially an exponential number of frequent itemsets The downward closure: property of frequent patterns

■ Any subset of a frequent itemset must be frequent

Benefits of the FP-tree Structure:

- **■** Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)

Parallel projection vs. partition projection techniques

- Parallel projection
 - Project the DB in parallel for each frequent item
 - Parallel projection is space costly
 - All the partitions can be processed in parallel
- Partition projection
 - Partition the DB based on the ordered frequent items
 - Passing the unprocessed parts to the subsequent partitions

(تحتاج مراجعه!!) CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets

دعواتكم لمن ساهم في هذا العمل