01“

Sixth Edition

Chapter 18 Fundamentals of

Indexing Database

Structures for Systems
Files

L_ Elmasri» Navathe
3
1

Addison-Wesley
is an imprint of

w Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Indexes as Access Paths

= Asingle-level index is an auxiliary file that makes

It more
file.

efficient to search for a record In the data

= The index is usually specified on one field of the
file (although it could be specified on several

fields)

s One form of an index is a file of entries <field

value,
fleld va

s The ind

is an imprint of

Copyright © 2011

pointer to record>, which is ordered by
ue

ex Is called an access path on the field.

Ramez Elmasri and Shamkant Navathe




Indexes as Access Paths (cont.)

= The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller

= Abinary search on the index yields a pointer to the file
record
s Indexes can also be characterized as dense or sparse

= Adense index has an index entry for every search key
value (and hence every record) in the data file.

= Asparse (or nondense) index, on the other hand, has
Index entries for only some of the search values

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Indexes as Access Paths (cont.)

Addison-Wesley
is an imprint of

Example: Given the following data file EMPLOYEE(NAME, SSN,
ADDRESS, JOB, SAL, ...)

Suppose that:

= record size R=150 bytes block size B=512 bytes r=30000
records

Then, we get:
= blocking factor Bfr= B div R=512 div 150= 3 records/block
= number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

For an index on the SSN field, assume the field size V¢,=9 bytes,
assume the record pointer size Py=7 bytes. Then:

= Index entry size R=(Vso\t+ Pr)=(9+7)=16 bytes
iIndex blocking factor Bfr= B div R=512 div 16= 32 entries/block
number of index blocks b= (r/ Bfr,)= (30000/32)= 938 blocks
binary search needs log,bl=109,938= 10 block accesses
This is compared to an average linear search cost of:
= (b/2)=30000/2= 15000 block accesses
= Ifthe file records are ordered, the binary search cost would be:
» log,b= 10g,30000= 15 block accesses

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Types of Single-Level Indexes

= Primary Index

Addison-Wesley
is an imprint of

Defined on an ordered data file
The data file is ordered on a key field

Includes one index entry for each block in the data file; the
Index entry has the key field value for the first record in the
block, which is called the block anchor

A similar scheme can use the /ast record in a block.

A primary index is a nondense (sparse) index, since it
Includes an entry for each disk block of the data file and the
keys of its anchor record rather than for every search value.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.1 (Primary
Primary index on the ordering key field of key field)
the file shown in Figure 17.7. Name Ssn |Birth_date | Job | Salary | Sex

Primary Index ==
on the Ordering NI I —

— | Adams, John

Key F I e | d Adams, Robin

Akers, Jan I | I | |

Index file A o Ed
(<K(i), P()> entries) > [ Alexander,
Alfred, Bob
Block anchor .
primary key Block Allen, Sam I | I | |
value pointer
Aaron, Ed o — | Allen, Troy
Adams, John o Anders, Keith
Alexander, Ed o H
Allen, Troy o Anderson, Rob I | I | |
Anderson, Zach
Arnold, Mack ° |—> Anderson, Zach
: Angel, Joe
Archer, Sue | | | | |
. —————— [ Arnold, Mack
. Arnold, Steven
Atkins, Timothy | | | ] [
— | Wong, James
Wood, Donald
Wong, James o H
Wright, Pam ® Woods, Manny | | I | |

L—— | Wright, Pam
Wyatt, Charles

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Zimmer, Byron I | I | |




Types of Single-Level Indexes

s Clustering Index
» Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary
Index, which requires that the ordering field of the data file
have a distinct value for each record.

= Includes one index entry for each distinct value of the field;
the index entry points to the first data block that contains
records with that field value.

= Itis another example of nondense index where Insertion
and Deletion is relatively straightforward with a clustering
iIndex.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



A Clustering —

(Clustering
field)

Data file

Dept_number

Name

Ssn

Job

Birth_date

Salary

1

— 1
Index |
2
a p e Index file > 2
(<K(i), P(i)> entries) 3
3
Clustering Block 3
field value pointer

1 ° 3
2 g 3
3 . 4
4 . 4

5 °
6 ° \—> 5
8 . 5
5
5
> 6
6
6
6
- 6
8
Figure 18.2 5

Addison-Wesley A clustering index on the Dept_number ordering

'satmerintet nonkey field of an EMPLOYEE file. 8

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Another
Clustering
Index
Example

Addison-Wesley
is an imprint of

Figure 18.3

Data file

-—
j__ NULL pointer

I
..|}_J

NULL pointer

NULL pointer

!
..||_J

I
..|’_J

NULL pointer

j__ NULL pointer

_L_NULL pointer

Clusteri
Clustering index with a ( :cji;c?)”ng
separate block cluster for Dept_number | Name | Ssn [ Job |Birth_date | Salary
each group of records 1
that share the same value ]
for the clustering field. 1
Block pointer
2
2
Block pointer
3
3
3
Index file 3 I -
(<K@, P()> entries) Block pointer |
3 [
Clustering Block Block pointer
field value pointer
1 -— 4
2 e 4
3 -
4 - Block pointer
2 e I
6 . 5
8 5
5
5
Block pointer *—
6
6
6
6
Block pointer  e——
|
6 [
Block pointer —
8
8
8

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Block pointer

_L_ NULL pointer




Types of Single-Level Indexes

= Secondary Index

= Asecondary index provides a secondary means of
accessing a file for which some primary access already
exists.

= The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

= The index is an ordered file with two fields.

= The first field is of the same data type as some non-ordering
field of the data file that is an indexing field.

= The second field is either a block pointer or a record pointer.

= There can be many secondary indexes (and hence, indexing
fields) for the same file.

= Includes one entry for each record in the data file; hence, it
IS a dense index

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Example of
a Dense
Secondary
Index

Addison-Wesley
is an imprint of

Figure 18.4
A dense secondary index (with block pointers) on a nonordering key field of a file.

Data file
Index file
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
Index Block - 5
field value pointer — -
1 . o
2 . - 13
- 8
3 -
4 . _
5 - > 6
6 . > 15
7 > 3
8 * 17
> 21
2 ‘ - 11
10 - s
11 . 5
12 s
13 Lo ..: ”
14 | > 10
15 - - 20
16 o h
I -
17 s > 4
18 ' - 23
19 -— 18
20 . 14
21 ©
22 -— :-_: 19
23 . = 7
24 o o 19
22

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.5 Data file
A secondary index (with

_ (Indexing field)
recor.d po_mters) on a non- Dept_number | Name | Ssn | Job |Birth_date | Salary
key field implemented

E I f using one level of indirec- Blocks of > £l
Xal I I p e O tion so that index entries record g S
are of fixed length and pointers |—+ 1
a SeCO n d ar have unique field values. | > 6
| > 2
Index | -
: — 4
Index file gfitd i
(<K(i), P(i)> entries) i
Field  Block T - 5
value pointer o 5
1 . e .
[t = 4
2 * = - 1
3 [ ®-
4 .__,_> ,
5 — : - 6
6 . [ -
_L KK °
8 . - 2
— > 5
[
L (o [d]e
o - 5
Ir ! - 1
. | 6
—=1t]1] -3
1
- 6
= 3
B 8
Addison-Wesley
is an imprint of — 3

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Properties of Index Types

Table 18.2 Properties of Index Types

Tvoe of Index Number of (First-level) Dense or Nondense Block Anchoring
P Index Entries (Sparse) on the Data File
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct Nondense Yes/no?
index field values
Secondary (key) Number of records in Dense No
data file
Secondary (nonkey) Number of recordsP or Dense or Nondense No

number of distinct index
field values®

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Multi-Level Indexes

s Because a single-level index is an ordered file, we can
create a primary index fo the index itself,
= In this case, the original index file is called the f#irst-level

/ndex and the index to the index iIs called the second-leve/
/naex.

= \We can repeat the process, creating a third, fourth, ..., top
level until all entries of the fop /eve/fit in one disk block

= A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Figure 18.6
A two-level primary index resembling ISAM (Indexed Sequential
Access Method) organization.

A TWO - L eve | Two-level index Data file

First (base) Primary
key field

Primary Index S
15 :_|_> -

24
12
L - 15
21
L 24
Second (top) 29

level
2 . F» 35 — 35
35 — 39 o 36

55 . 44
39

85 . 51 .

41
— 44
46
= 51
52
L»| 55 — 55
63 .- 58

71 o _|_>
80 - 63
66
L 71
78
85 | — 80

- -

82
Addison-Wesley 85
is an imprint of 89

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Multi-Level Indexes

m Such a multi-level index I1s a form of search tree

= However, insertion and deletion of new index
entries Is a severe problem because every level of
the index Is an ordered file.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



A Node In a Search Tree with Pointers to
Subtrees Below It

Figure 18.8 P, Ki|l ... | Kiilo P K; | Kyt | Pye

A node in a search i
tree with pointers to / l P, \

subtrees below it.

X<K, K <X<K K, <X

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.9 El Tree node pointer
A search tree of

order p = 3. |:| Null tree pointer

pd

e

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez EiImasri and Shamkant Navathe

12




Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion problem

= This leaves space in each tree node (disk block) to allow for
new index entries

s These data structures are variations of search trees that
allow efficient insertion and deletion of new search values.

s |In B-Tree and B+-Tree data structures, each node
corresponds to a disk block

= Each node is kept between half-full and completely full

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Dynamic Multilevel Indexes Using B-Trees
and B+-Trees (cont.)

= An Insertion into a node that is not full is quite
efficient

= If a node is full the insertion causes a split into two
nodes

= Splitting may propagate to other tree levels

= A deletion is quite efficient if a node does not
pecome less than half full

s If a deletion causes a node to become less than
nalf full, it must be merged with neighboring
nodes

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Difference between B-tree and B+-tree

= In a B-tree, pointers to data records exist at all
evels of the tree

= In a B+-tree, all pointers to data records exists at
the leaf-level nodes

= A B+-tree can have less levels (or higher capacity
of search values) than the corresponding B-tree

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




B-tree Structures

@) rP1 Ki|Pri| Bo oo | Ky |oPrict 1,P,- K | Pri Ko-1|Pro-1| P, .
Tree Tree
Y Y pointer Y Y pointer
Trge Data Data Data Data
pointer pointer ¥ pointer pointer pointer
Tree
pointer
X<K, K. <X<K; K1 <X
®) ol |S|of|?]|[8[°f]°® ® | Tree node pointer
o [ Data pointer
Null tree pointer
\/ ||
1 |o 3 |o 6 |o 7 |o 9 |o 1210

Figure 18.10
B-tree structures. (a) A node in a B-tree with g — 1 search values. (b) A B-tree
of order p = 3.The values were inserted in the order 8,5, 1,7, 3, 12, 9, 6.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



The Nodes of a B+-tree

Figure 18.11
The nodes of a B*-tree. (a) Internal node of a B*-tree with g — 1 search values.
(b) Leaf node of a B*-tree with g — 1 search values and g — 1 data pointers.

(@) o P K; - | K| 9P Ki Kii| Pqo

Tree Tree Tree
pointer pointer pointer

X< K, K_1<X<LK; Kyt <X
(b) .
K, |.Pr Kol Pro] - [KLPr] - [ lgProt] Pro ol oo
node in
\ Y Y Y tree
Data Data Data Data
pointer pointer pointer pointer

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Example of
an Insertion
In a B+-tree

Addison-Wesley
is an imprint of

*7*5‘

Insertion sequence: 8,5,1,7 3,12, 9,6

~-— |nsert 1: overflow (new level)

Tree node pointer

-
—

i
g

-+— |nsert 7 Null tree pointer

|E| Data pointer

Y

Insert 3: overflow r®
(split) *—r

Insert 12: overflow (split, propagates,

[=]

new level)

-
—

:

Y
= [7[o] [e]o]

<

-
~gt

—

| [7]o] [8lo] |+~ [12]o]

-
-

(1.

Y Y

| [7[o] [8[o]{+pm{[olo] [12]0]

Insert 6: overflow (split, propagates)

-
-

——e

.
= = ) = = EL @ EE = =
< °]| < © ||« = B
(e

v v Y

b4

]
o]
a2

| Lelo] [7] o]+

Figure 18,12

An example of insertion in a B¥-tree with p =3 and p, ;= 2.

Copyright © 2011 Ramez EiImasri and Shamkant Navathe




Deletion sequence: 5,12, 9

T
[
~1
q

-

Example of

a Deletion In ™ -[EE = IR

1
a B+-tree o

s e B

-
.
-
-
@
[
-
[{s]
[
- !

L]
~J
p
e

©
9
-

Delete 12: underflow
(redistribute)

T
L ]
~J
L ]

]
@
[

-

re | 1 T 6 e
I '

Delete 9: underflow
¢ (merge with left, redistribute)

T 7 .
| l

H - |-
]
Y
|~
[°]
y
Y

S E——

Figure 18.13
'}f:f‘.’n';::ﬁflg%' An example of deletion from a B*-tree.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Summary

= Types of Single-level Ordered Indexes
= Primary Indexes
s Clustering Indexes
s Secondary Indexes

s Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



