PAGE  
1

Chapter 11: Object and Object-Relational Databases


CHAPTER 11: OBJECT and OBJECT-RELATIONAL DATABASES

Answers to Selected Exercises

11.25 - Convert the example of GEOMETRY_OBJECTS given in section 11.1.5 from the functional notation to the notation given in Figure 11.2 that distinguishes between attributes and operations. Use the keyword INHERIT to show that one class inherits from another class.

Answer:

(GEOMETRY_OBJECTS to attribute/operation)

define class GEO_OBJECT:

type tuple ( shape : enumerated(rectangle, triangle, circle);

refpoint : tuple ( x: float,

y: float) );

operations area : float;

end GEO_OBJECT;

define class RECTANGLE:

INHERITS GEO_OBJECT;

type tuple ( width : float,

height: float);

operations square? : boolean;

end RECTANGLE;

define class TRIANGLE:

INHERITS GEO_OBJECT;

type tuple ( side1 : float,

side2 : float,

angle : float );

end TRIANGLE;

define class CIRCLE:

INHERITS GEO_OBJECT;

type tuple ( radius : float );

operations diameter : float;

ci rcumference : float;

end CIRCLE;

11.26  - Compare inheritance in the EER model (see Chapter 8) to inheritance in the OO model described in Section 11.1.5.

Answer:

(EER inheritance vs. OO inheritance)

EER inheritance has closer correspondence to the real world, in the

sense that it is synthesized from facts about tangible entities,

rather than imposed through software engineering process. At the EER

level, the possible ambiguities of multiple inheritance may be

deferred until implementation.

Object-oriented database design emphasizes abstract structures and

methods; objects need not exist. Polymorphism and visibility

properties drive the design. OO inheritance allows membership in many

different sets and extents. In fact, membership is distinguished from

properties, as seen in type and extent inheritance.

11.27 - Consider the UNIVERSITY EER schema of Figure 8.10. Think of what operations are needed for the entity types/classes in the schema. Do not consider constructor and destructor operations.

Answer:

(University database operations)

define class PERSON:

operations change-address (new : Address) : Address;

define class COURSE:

operations new-section ( Yr, Qtr : integer ) : Section;

get-current : set ( cur-sec : Current_Section );

change-dept ( new-dept : Department ) : Course;

define class STUDENT:

operations change-major ( new : Major ) : Student;

register ( sec : Current_Section ) : boolean;

g et-transcript : set ( tuple ( course-taken : Course;

grade : char; ) );

define class FACULTY:

operations call-comm-meeting ( S : Student ) : set ( Faculty );

compute-support : float;

change-dept ( new-dept : Department ) : Faculty;

make-chairman ( dept : Department ) : Faculty;

Many other operations are possible, as well.

11.28 - Consider the COMPANY ER schema of Figure 7.2. Think of what operations are needed for the entity types/classes in the schema. Do not consider constructor and destructor operations.

Answer:

(Company database operations)

define class EMPLOYEE:

operations raise-salary ( pct : float ) : boolean;

change address ( new : Address ) : boolean;

get-age : integer;

get-supervisor : Employee;

get-supervisees : set ( Employee );

show-projects : set ( tuple ( Pname : Project,

hours : integer ) );

show-dependents : set ( Dependent );

define class DEPARTMENT:

operations count-emps : integer;

get-manager : Employee;

get-locations : set ( String );

list-controlled-projects : set ( Project );

define class PROJECT:

operations get-department : Department;

show-emp-hours : float;

show-dept-contributions : set ( tuple

( D : Department,

set ( tuple ( emp : Employee,

hrs : integer )

) ) );

Many other operations are possible, as well.

11.29 – 11.30: No solutions provided.

11.31 - Map the COMPANY ER schema of Figure 7.2 into ODL classes. Include appropriate methods for each class.

Answer:

class Employee

( extent employees

key ssn

{

attribute struct name {string fname, string mname, string lname}

name;

attribute string ssn;

attribute date bdate;

attribute enum Gender{M, F} sex;

attribute string address;

attribute float salary;

attributte Employee supervisor;

relationship Department works_for inverse Department::

has_employees;

relationship set<Hours_Worked> work inverse Hours_Worked:: work_by;

short age();

void give_raise(in float raise);

void change_address(in string new_address);

void reassign_emp(in string new_dname) raises(dname_not_valid);

};

class Department

( extent departments

key dname, dnumber

{

attribute string dname;

attribute short dnumber;

attribute struct Dept_Mgr {Employee manager, date startdate}

mgr;

attribute set<string> locations;

relationship set<Employee> has_employees inverse Employee:: works_for;

relationship set<Project> controls inverse Project:: controlled_by;

short no_of_employees();

void add_emp(in string new_essn) raises (essn_not_valid);

void add_proj(in string new_pname) raises (pname_not_valid);

void change_manger(in string new_mssn; in date startdate) raises

(mssn_not_valid);

};

class Project

( extent projects

key pname, pnumber

{

attribute string pname;

attribute short pnumber;

attributte string location;

relationship Department controlled_by inverse Department:: controls;

relationship set<Hours_Worked> work_at inverse Hours_Worked:: work_on;

void reassign_proj(in string new_dname) raises(dname_not_valid);

};

class Hours_Worked

( extent hours_worked

{

attributte float hours;

relationship Employee work_by inverse Employee:: work;

relationship Project work_on inverse Project:: work_at;

void change_hours(in float new_hours);

};

class Dependent

( extent dependents

{

attribute string name;

attribute date bdate;

attribute enum Gender{M, F} sex;

attribute string relationship;

attributte Employee suporter;

short age();

};

11.32 - Specify in OQL the queries in the exercises of Chapter 7 and 8 that apply to the COMPANY database.

(a) Retrieve the names of employees in department 5 who work more than 10 hours per

week on the 'ProductX' project.

select e.name.fname

from e in employee

where e.works_for .dnumber = 5 and

( 'Product X' in

(select h.work_on.pname

from h in e.work

where h.hours > 10));

(b) List the name of employees who have a dependent with the same first name as

themselves.

select k.suporter.fname

from k in dependents

where k.name = k.suporter.fname

(c) List the name of employees who are all directly supervised by 'Franklin Wong'.

select e.fname

from e in employee

where e.supervisor.name.fname = 'Franklin' and e.supervisor.name.lname = 'Wong';

(d) For each project, list the project name and the total hours per week (by all employees)

spent on that project.

select projname, tot_hours : sum (select p.h.hours from p in partition)

from h in hours_worked

group by projname: w.work_on.pname;

(e) Retrieve the names of all employees who work on every project.

select e.name.fname

from e in employee

where for all g in (select p.pnumber

from p in projects)

: g.pnumber in (select e.work.work_on.pnumber);

(f) Retrieve the names of all employees who do not work on any project.

select e.name.fname

from e in employee

where for all g in (select p.pnumber

from p in projects)

: g.pnumber not in (select e.work.work_on.pnumber);

(g) For each department, retrieve the department name, and the average salary of employees

working in that department.

select deptname, avgsal : avg (select p.e.salary from p in partition)

from e in employee

group by deptname: e.works_for.dname;

(h) Retrieve the average salary of all female employees.

avg (select e.salarey

from e in employee

where e.sex = 'M');

11.33 – No solution provided.

PAGE  
ScholarStock

