PAGE
1

Chapter 10: Practical Database Design Methodology and Use of UML Diagrams

CHAPTER 10: PRACTICAL DATABASE DESIGN METHODOLOGY AND USE OF UML DIAGRAMS

10.22 - What are the current relational DBMSs that dominate the market? Pick one that you are familiar with and show how it measures up based on the criteria laid out in Section 10.2.3?

Answer:

Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and Rdb (from Oracle), and SQL Server and Access (from Microsoft). Some other commercial relational DBMSs used are Sybase (also known as Sybase SQL Server), Paradox, and Foxbase. Recently, some open source relational DBMSs, such as MySQL, PostGreSQL, and FireBird, have also grown in popularity. At the time this solution was written, the market share varied depending on platform; with DB2, Oracle, and Microsoft SQL Server dominating the market overall. Specific criteria evaluation would depend on the database chosen.

10.23 - A possible DDL corresponding to Figure 3.1 is shown below:

CREATE TABLE STUDENT (

NAME

VARCHAR(30)
NOT NULL,

SSN

CHAR(9)

PRIMARY KEY,

HOMEPHONE
VARCHAR(14),

ADDRESS

VARCHAR(40),

OFFICEPHONE
VARCHAR(14),

AGE

INT,

GPA

DECIMAL(4,3)

);

Discuss the following detailed design decisions:

a.
The choice of requiring NAME to be NON NULL.

b.
Selection of SSN as the PRIMARY KEY.

c.
Choice of field sizes and precision.

d.
Any modification of the fields defined in this database.

e.
Any constraints on individual fields.

Answer:

a) This means that no Students can exist without a Name.

b) This has a possible problem because there are some restrictions on using SSN as an identifier for people, hence why most schools assign a student ID. It also does not allow (easily) for a change to a student’s SSN if this key is used elsewhere in the DB.

c) Giving Name a size of 30 does not allow for long names (think foreign students), especially since it contains a student’s entire name (first, middle, last). Homephone and Officephone, with size 14, might not allow for overseas or foreign formatted phone numbers. Age is expected to be (roughly) between 1 and 100, so using an INT is much more space than needed. A TinyInt would be better, since it allows 0 to 255. The GPA field does not allow for GPA systems that go above 9 (such as the 10 point scale and the 12 point scale), though these are rare.

d)
I would suggest breaking the Name field into three fields: FirstName, MiddleName, and LastName. It is more complicated and less specific to search for a student by name if the name data is in one field. See question 3.19.

The same reasoning can be applied to the Homephone and Officephone fields, breaking them into multiple fields such as AreaCode, PhoneNumber, Extension, etc.

Another possible modification is to increase the size of the Homephone, Officephone, and SSN fields so that formatting characters can be entered, such as SSN becoming a VARCHAR(11) to allow for the two dashes in XXX-YY-ZZZZ.

The table design allows for two phone numbers, Homephone and Officephone, either of which may be NULL. This means that some rows will have empty fields for those attributes. A solution is then to add a Phone# (SSN, Type, Number) table and remove the two phone number fields from the Students table. This allows for any student to have zero or more phone numbers of various types, which we can specify (Home, Office, Cell, etc.).

Consider not storing the AGE data and instead storing DateOfBirth. Typically only the year component of Age is stored which is less accurate than if DateOfBirth were stored and the age computed from it. That is, we can generate Age from DateOfBirth, but we cannot generate DateOfBirth from Age.

e) A suggested constraint is on the GPA field, to restrict its values from 0.000 to 4.000. This would, however, prevent the (rarely seen) 10 or 12 point grade scale. Another possible constraint is to limit Age to be from 0 to 100 (or even a lower maximum value).

10.24 - What naming conventions can you develop to help identify foreign keys more efficiently?

Answer:

The naming convention can be informally specified as FK followed by the referenced relationship or relation name, and optionally followed by the primary key of the referenced table. This foreign key naming convention is frequently used in large databases. Sometimes this produces very long column names but it pays off by facilitating readability for database professionals by using more descriptive names.

PAGE
ScholarStock

