
5/11/2015

1

IT344- Database Management Systems

Study Guide for Final Examination
May 2015

College of Computing and Informatics
Saudi Electronic University

Chapter 17

Disk Storage, Basic File Structure and Hashing

Disk Storage Devices

■ Preferred secondary storage device for high
storage capacity and low cost.

■ Data stored as magnetized areas on magnetic
disk surfaces.

■ A disk pack contains several magnetic disks
connected to a rotating spindle.

■ Disks are divided into concentric circular tracks
on each disk surface.

■ Track capacities vary typically from 4 to 50 Kbytes
or more

Disk Storage Devices (cont.)

■ A track is divided into smaller blocks or sectors

■ because it usually contains a large amount of information

■ The division of a track into sectors is hard-coded on the

disk surface and cannot be changed.

■ One type of sector organization calls a portion of a track

that subtends a fixed angle at the center as a sector.

■ A track is divided into blocks.

■ The block size B is fixed for each system.

■ Typical block sizes range from B=512 bytes to B=4096 bytes.

■ Whole blocks are transferred between disk and main

memory for processing.

Records

■ Fixed and variable length records

■ Records contain fields which have values of a
particular type

■ E.g., amount, date, time, age

■ Fields themselves may be fixed length or variable
length

■ Variable length fields can be mixed into one
record:

■ Separator characters or length fields are needed
so that the record can be “parsed.”

Operation on Files
■ Typical file operations include:

■ OPEN: Readies the file for access, and associates a pointer that will refer
to a current file record at each point in time.

■ FIND: Searches for the first file record that satisfies a certain condition, and
makes it the current file record.

■ FINDNEXT: Searches for the next file record (from the current record) that
satisfies a certain condition, and makes it the current file record.

■ READ: Reads the current file record into a program variable.

■ INSERT: Inserts a new record into the file & makes it the current file
record.

■ DELETE: Removes the current file record from the file, usually by marking
the record to indicate that it is no longer valid.

■ MODIFY: Changes the values of some fields of the current file record.

■ CLOSE: Terminates access to the file.

■ REORGANIZE: Reorganizes the file records.

■ For example, the records marked deleted are physically removed from
the file or a new organization of the file records is created.

■ READ_ORDERED: Read the file blocks in order of a specific field of the
file.

5/11/2015

2

Ordered Files

■ Also called a sequential file.

■ File records are kept sorted by the values of an ordering field.

■ Insertion is expensive: records must be inserted in the correct order.

■ It is common to keep a separate unordered overflow (or
transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

■ A binary search can be used to search for a record on its ordering
field value.

■ This requires reading and searching log2 of the file blocks on the
average, an improvement over linear search.

■ Reading the records in order of the ordering field is quite efficient.

RAID Technology (cont.)

■ Different raid organizations were defined based on different
combinations of the two factors of granularity of data interleaving
(striping) and pattern used to compute redundant information.

■ Raid level 0 has no redundant data and hence has the best write
performance at the risk of data loss

■ Raid level 1 uses mirrored disks.
■ Raid level 2 uses memory-style redundancy by using Hamming

codes, which contain parity bits for distinct overlapping subsets of
components. Level 2 includes both error detection and correction.

■ Raid level 3 uses a single parity disk relying on the disk controller
to figure out which disk has failed.

■ Raid Levels 4 and 5 use block-level data striping, with level 5
distributing data and parity information across all disks.

■ Raid level 6 applies the so-called P + Q redundancy scheme
using Reed-Soloman codes to protect against up to two disk
failures by using just two redundant disks.

Chapter 18

Indexing Structures for Files

Indexes as Access Paths

■ A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

■ The index is usually specified on one field of the
file (although it could be specified on several
fields)

■ One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

■ The index is called an access path on the field.

Indexes as Access Paths (cont.)

■ The index file usually occupies considerably less disk

blocks than the data file because its entries are much

smaller

■ A binary search on the index yields a pointer to the file

record

■ Indexes can also be characterized as dense or sparse

■ A dense index has an index entry for every search key

value (and hence every record) in the data file.

■ A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Types of Single-Level Indexes

■ Primary Index

■ Defined on an ordered data file

■ The data file is ordered on a key field

■ Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the

block, which is called the block anchor

■ A similar scheme can use the last record in a block.

■ A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the

keys of its anchor record rather than for every search value.

5/11/2015

3

Types of Single-Level Indexes

■ Clustering Index

■ Defined on an ordered data file

■ The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file

have a distinct value for each record.

■ Includes one index entry for each distinct value of the field;

the index entry points to the first data block that contains

records with that field value.

■ It is another example of nondense index where Insertion

and Deletion is relatively straightforward with a clustering

index.

Types of Single-Level Indexes

■ Secondary Index
■ A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

■ The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

■ The index is an ordered file with two fields.
■ The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.
■ The second field is either a block pointer or a record pointer.
■ There can be many secondary indexes (and hence, indexing

fields) for the same file.

■ Includes one entry for each record in the data file; hence, it
is a dense index

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

■ Most multi-level indexes use B-tree or B+-tree data

structures because of the insertion and deletion problem

■ This leaves space in each tree node (disk block) to allow for

new index entries

■ These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.

■ In B-Tree and B+-Tree data structures, each node

corresponds to a disk block

■ Each node is kept between half-full and completely full

Difference between B-tree and B+-tree

■ In a B-tree, pointers to data records exist at all

levels of the tree

■ In a B+-tree, all pointers to data records exists at

the leaf-level nodes

■ A B+-tree can have less levels (or higher capacity

of search values) than the corresponding B-tree

Chapter 19

Algorithms for Query processing and
Optimization

0. Introduction to Query Processing (1)

■ Query optimization:

■ The process of choosing a suitable execution

strategy for processing a query.

■ Two internal representations of a query:

■ Query Tree

■ Query Graph

5/11/2015

4

1. Translating SQL Queries into Relational

Algebra (1)

■ Query block:

■ The basic unit that can be translated into the
algebraic operators and optimized.

■ A query block contains a single SELECT-FROM-
WHERE expression, as well as GROUP BY and
HAVING clause if these are part of the block.

■ Nested queries within a query are identified as
separate query blocks.

■ Aggregate operators in SQL must be included in
the extended algebra.

Translating SQL Queries into Relational

Algebra (2)

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5);

SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > C

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

Using Heuristics in Query Optimization (2)

■ Query tree:
■ A tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as
leaf nodes of the tree, and represents the relational
algebra operations as internal nodes.

■ An execution of the query tree consists of executing an
internal node operation whenever its operands are
available and then replacing that internal node by the
relation that results from executing the operation.

■ Query graph:
■ A graph data structure that corresponds to a relational

calculus expression. It does not indicate an order on which
operations to perform first. There is only a single graph
corresponding to each query.

Using Heuristics in Query Optimization (5)

■ Heuristic Optimization of Query Trees:

■ The same query could correspond to many different
relational algebra expressions — and hence many different
query trees.

■ The task of heuristic optimization of query trees is to find a
final query tree that is efficient to execute.

■ Example:
Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‘AQUARIUS’ AND
PNMUBER=PNO AND ESSN=SSN
AND BDATE > ‘1957-12-31’;

Using

Heuristics in

Query

Optimization

(7)

Using Heuristics in

Query

Optimization (8)

5/11/2015

5

Using Heuristics in Query Optimization (9)

■ General Transformation Rules for Relational Algebra Operations:

1. Cascade of σ: A conjunctive selection condition can be broken up into
a cascade (sequence) of individual σ operations:

■ σ c1 AND c2 AND ... AND cn(R) = σc1 (σc2 (...(σcn(R))...))

2. Commutativity of σ: The σ operation is commutative:

■ σc1 (σc2(R)) = σc2 (σc1(R))

3. Cascade of π: In a cascade (sequence) of π operations, all but the
last one can be ignored:

■ πList1 (πList2 (...(πListn(R))...)) = πList1(R)

4. Commuting σ with π: If the selection condition c involves only the
attributes A1, ..., An in the projection list, the two operations can be
commuted:

■ πA1, A2, ..., An (σc (R)) = σc (πA1, A2, ..., An (R))

Using Heuristics in Query Optimization (10)

■ General Transformation Rules for Relational Algebra Operations
(contd.):

5. Commutativity of (and x): The operation is commutative as is
the x operation:

■ R C S = S C R; R x S = S x R

6. Commuting σ with (or x): If all the attributes in the selection
condition c involve only the attributes of one of the relations being
joined—say, R—the two operations can be commuted as follows:

■ σc (R S) = (σc (R)) S

■ Alternatively, if the selection condition c can be written as (c1 and c2),
where condition c1 involves only the attributes of R and condition c2
involves only the attributes of S, the operations commute as follows:

■ σc (R S) = (σc1 (R)) (σc2 (S))

Using Heuristics in Query Optimization

(16)

■ Query Execution Plans

■ An execution plan for a relational algebra query consists of

a combination of the relational algebra query tree and

information about the access methods to be used for each

relation as well as the methods to be used in computing the

relational operators stored in the tree.

■ Materialized evaluation: the result of an operation is stored

as a temporary relation.

■ Pipelined evaluation: as the result of an operator is

produced, it is forwarded to the next operator in sequence.

Chapter 20

Physical Database Design and Tuning

1. Physical Database Design in Relational

Databases (1)

■ Factors that Influence Physical Database Design:

A. Analyzing the database queries and transactions

■ For each query, the following information is needed.

1. The files that will be accessed by the query;

2. The attributes on which any selection conditions for the query

are specified;

3. The attributes on which any join conditions or conditions to link

multiple tables or objects for the query are specified;

4. The attributes whose values will be retrieved by the query.

■ Note: the attributes listed in items 2 and 3 above are

candidates for definition of access structures.

Physical Database Design in Relational

Databases (2)

■ Factors that Influence Physical Database Design (cont.):
A. Analyzing the database queries and transactions (cont.)

■ For each update transaction or operation, the following
information is needed.

1. The files that will be updated;

2. The type of operation on each file (insert, update or delete);

3. The attributes on which selection conditions for a delete or update
operation are specified;

4. The attributes whose values will be changed by an update operation.

■ Note: the attributes listed in items 3 above are candidates for
definition of access structures. However, the attributes listed in
item 4 are candidates for avoiding an access structure.

5/11/2015

6

Physical Database Design in Relational

Databases (3)

■ Factors that Influence Physical Database Design (cont.):

B. Analyzing the expected frequency of invocation of

queries and transactions

■ The expected frequency information, along with the attribute

information collected on each query and transaction, is used

to compile a cumulative list of expected frequency of use

for all the queries and transactions.

■ It is expressed as the expected frequency of using each

attribute in each file as a selection attribute or join attribute,

over all the queries and transactions.

■ 80-20 rule

■ 20% of the data is accessed 80% of the time

Physical Database Design in Relational

Databases (4)

■ Factors that Influence Physical Database Design

(cont.)

C. Analyzing the time constraints of queries

and transactions

■ Performance constraints place further priorities on

the attributes that are candidates for access paths.

■ The selection attributes used by queries and

transactions with time constraints become higher-

priority candidates for primary access structure.

Physical Database Design in Relational

Databases (4)

■ Factors that Influence Physical Database Design

(cont.)

D. Analyzing the expected frequencies of

update operations

■ A minimum number of access paths should be

specified for a file that is updated frequently.

Physical Database Design in Relational

Databases (4)

■ Factors that Influence Physical Database Design

(cont.)

E. Analyzing the uniqueness constraints on

attributes

■ Access paths should be specified on all candidate

key attributes — or set of attributes — that are

either the primary key or constrained to be unique.

Physical Database Design in Relational

Databases (6)

■ Physical Database Design Decisions (cont.)

■ Denormalization as a design decision for speeding up
queries

■ The goal of normalization is to separate the logically related
attributes into tables to minimize redundancy and thereby
avoid the update anomalies that cause an extra processing
overheard to maintain consistency of the database.

■ The goal of denormalization is to improve the performance
of frequently occurring queries and transactions. (Typically
the designer adds to a table attributes that are needed for
answering queries or producing reports so that a join with
another table is avoided.)

■ Trade off between update and query performance

2. An Overview of Database Tuning in

Relational Systems (1)

■ Tuning:

■ The process of continuing to revise/adjust the physical

database design by monitoring resource utilization as well

as internal DBMS processing to reveal bottlenecks such as

contention for the same data or devices.

■ Goal:

■ To make application run faster

■ To lower the response time of queries/transactions

■ To improve the overall throughput of transactions

5/11/2015

7

An Overview of Database Tuning in

Relational Systems (3)

■ Problems to be considered in tuning:

■ How to avoid excessive lock contention?

■ How to minimize overhead of logging and

unnecessary dumping of data?

■ How to optimize buffer size and scheduling of

processes?

■ How to allocate resources such as disks, RAM and

processes for most efficient utilization?

Chapter 21

Introduction to Transaction Processing Concepts
and Theory

1 Introduction to Transaction

Processing (1)

■ Single-User System:
■ At most one user at a time can use the system.

■ Multiuser System:
■ Many users can access the system concurrently.

■ Concurrency
■ Interleaved processing:

■ Concurrent execution of processes is interleaved in
a single CPU

■ Parallel processing:
■ Processes are concurrently executed in multiple

CPUs.

Introduction to Transaction Processing (2)

■ A Transaction:
■ Logical unit of database processing that includes one or more

access operations (read -retrieval, write - insert or update,
delete).

■ A transaction (set of operations) may be stand-alone
specified in a high level language like SQL submitted
interactively, or may be embedded within a program.

■ Transaction boundaries:
■ Begin and End transaction.

■ An application program may contain several
transactions separated by the Begin and End transaction
boundaries.

Introduction to Transaction Processing (3)

SIMPLE MODEL OF A DATABASE (for purposes of
discussing transactions):

■ A database is a collection of named data items

■ Granularity of data - a field, a record , or a whole disk
block (Concepts are independent of granularity)

■ Basic operations are read and write

■ read_item(X): Reads a database item named X into a
program variable. To simplify our notation, we assume
that the program variable is also named X.

■ write_item(X): Writes the value of program variable X
into the database item named X.

Introduction to Transaction Processing (6)

Why Concurrency Control is needed:
■ The Lost Update Problem

■ This occurs when two transactions that access the same database
items have their operations interleaved in a way that makes the value
of some database item incorrect.

■ The Temporary Update (or Dirty Read) Problem
■ This occurs when one transaction updates a database item and then

the transaction fails for some reason (see Section 21.1.4).

■ The updated item is accessed by another transaction before it is
changed back to its original value.

■ The Incorrect Summary Problem
■ If one transaction is calculating an aggregate summary function on a

number of records while other transactions are updating some of
these records, the aggregate function may calculate some values
before they are updated and others after they are updated.

5/11/2015

8

Introduction to Transaction Processing

(12)

Why recovery is needed:
(What causes a Transaction to fail)

1. A computer failure (system crash):

2. 2. A transaction or system error:

3. 3. Local errors or exception conditions detected by the
transaction:

4. 4. Concurrency control enforcement:
5. Disk failure:
6. Physical problems and catastrophes:

2 Transaction and System Concepts (1)

■ A transaction is an atomic unit of work that is
either completed in its entirety or not done at all.

■ For recovery purposes, the system needs to
keep track of when the transaction starts,
terminates, and commits or aborts.

■ Transaction states:

■ Active state

■ Partially committed state

■ Committed state

■ Failed state

■ Terminated State

Transaction and System Concepts (3)

■ Recovery manager keeps track of the following

operations (cont):

■ commit_transaction: This signals a successful

end of the transaction so that any changes

(updates) executed by the transaction can be

safely committed to the database and will not be

undone.

■ rollback (or abort): This signals that the

transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have

applied to the database must be undone.

Transaction and System Concepts (4)

■ Recovery techniques use the following operators:

■ undo: Similar to rollback except that it applies to a

single operation rather than to a whole transaction.

■ redo: This specifies that certain transaction

operations must be redone to ensure that all the

operations of a committed transaction have been

applied successfully to the database.

Transaction and System Concepts (10)

Commit Point of a Transaction:
■ Definition a Commit Point:

■ A transaction T reaches its commit point when all its
operations that access the database have been executed
successfully and the effect of all the transaction operations on
the database has been recorded in the log.

■ Beyond the commit point, the transaction is said to be
committed, and its effect is assumed to be permanently
recorded in the database.

■ The transaction then writes an entry [commit,T] into the log.

■ Roll Back of transactions:
■ Needed for transactions that have a [start_transaction,T] entry

into the log but no commit entry [commit,T] into the log.

3 Desirable Properties of Transactions (1)

ACID properties:

■ Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

■ Consistency preservation: A correct execution of the transaction
must take the database from one consistent state to another.

■ Isolation: A transaction should not make its updates visible to other
transactions until it is committed; this property, when enforced strictly,
solves the temporary update problem and makes cascading rollbacks
of transactions unnecessary (see Chapter 21).

■ Durability or permanency: Once a transaction changes the
database and the changes are committed, these changes must never
be lost because of subsequent failure.

5/11/2015

9

Chapter 22

Concurrency Control Techniques

Database Concurrency Control

■ 1 Purpose of Concurrency Control
■ To enforce Isolation (through mutual exclusion) among

conflicting transactions.

■ To preserve database consistency through consistency
preserving execution of transactions.

■ To resolve read-write and write-write conflicts.

■ Example:
■ In concurrent execution environment if T1 conflicts with T2

over a data item A, then the existing concurrency control
decides if T1 or T2 should get the A and if the other
transaction is rolled-back or waits.

Database Concurrency Control

Two-Phase Locking Techniques

■ Locking is an operation which secures

■ (a) permission to Read

■ (b) permission to Write a data item for a transaction.

■ Example:

■ Lock (X). Data item X is locked in behalf of the requesting
transaction.

■ Unlocking is an operation which removes these permissions
from the data item.

■ Example:

■ Unlock (X): Data item X is made available to all other
transactions.

■ Lock and Unlock are Atomic operations.

Database Concurrency Control

Two-Phase Locking Techniques: Essential components
■ Two locks modes:

■ (a) shared (read) (b) exclusive (write).

■ Shared mode: shared lock (X)
■ More than one transaction can apply share lock on X for

reading its value but no write lock can be applied on X by any
other transaction.

■ Exclusive mode: Write lock (X)
■ Only one write lock on X can exist at any time and no shared

lock can be applied by any other transaction on X.

■ Conflict matrix

Database Concurrency Control

Two-Phase Locking Techniques: Essential

components

■ Lock Manager:

■ Managing locks on data items.

■ Lock table:

■ Lock manager uses it to store the identify of

transaction locking a data item, the data item, lock

mode and pointer to the next data item locked. One

simple way to implement a lock table is through

linked list.

Database Concurrency Control

Two-Phase Locking Techniques: The algorithm

■ Two Phases:

■ (a) Locking (Growing)

■ (b) Unlocking (Shrinking).

■ Locking (Growing) Phase:

■ A transaction applies locks (read or write) on desired data items

one at a time.

■ Unlocking (Shrinking) Phase:

■ A transaction unlocks its locked data items one at a time.

■ Requirement:

■ For a transaction these two phases must be mutually exclusively,

that is, during locking phase unlocking phase must not start and

during unlocking phase locking phase must not begin.

5/11/2015

10

Database Concurrency Control

Two-Phase Locking Techniques: The algorithm
■ Two-phase policy generates two locking algorithms

■ (a) Basic
■ (b) Conservative

■ Conservative:
■ Prevents deadlock by locking all desired data items before

transaction begins execution.
■ Basic:

■ Transaction locks data items incrementally. This may cause
deadlock which is dealt with.

■ Strict:
■ A more stricter version of Basic algorithm where unlocking is

performed after a transaction terminates (commits or aborts and
rolled-back). This is the most commonly used two-phase locking
algorithm.

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock

T’1 T’2

read_lock (Y); T1 and T2 did follow two-phase

read_item (Y); policy but they are deadlock

read_lock (X);

read_item (Y);

write_lock (X);

(waits for X) write_lock (Y);

(waits for Y)

■ Deadlock (T’1 and T’2)

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock prevention

■ A transaction locks all data items it refers to before

it begins execution.

■ This way of locking prevents deadlock since a

transaction never waits for a data item.

■ The conservative two-phase locking uses this

approach.

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock detection and resolution

■ In this approach, deadlocks are allowed to happen. The

scheduler maintains a wait-for-graph for detecting cycle. If

a cycle exists, then one transaction involved in the cycle is

selected (victim) and rolled-back.

■ A wait-for-graph is created using the lock table. As soon as

a transaction is blocked, it is added to the graph. When a

chain like: Ti waits for Tj waits for Tk waits for Ti or Tj

occurs, then this creates a cycle. One of the transaction o

Database Concurrency Control

Dealing with Deadlock and Starvation

■ Deadlock avoidance

■ There are many variations of two-phase locking algorithm.

■ Some avoid deadlock by not letting the cycle to complete.

■ That is as soon as the algorithm discovers that blocking a

transaction is likely to create a cycle, it rolls back the

transaction.

■ Wound-Wait and Wait-Die algorithms use timestamps to

avoid deadlocks by rolling-back victim.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 23

Database

Recovery

Techniques

5/11/2015

11

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

1 Purpose of Database Recovery

■ To bring the database into the last consistent state,
which existed prior to the failure.

■ To preserve transaction properties (Atomicity,
Consistency, Isolation and Durability).

■ Example:

■ If the system crashes before a fund transfer transaction
completes its execution, then either one or both
accounts may have incorrect value. Thus, the
database must be restored to the state before the
transaction modified any of the accounts.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

2 Types of Failure

■ The database may become unavailable for use

due to

■ Transaction failure: Transactions may fail

because of incorrect input, deadlock, incorrect

synchronization.

■ System failure: System may fail because of

addressing error, application error, operating

system fault, RAM failure, etc.

■ Media failure: Disk head crash, power disruption,

etc.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

3 Transaction Log
■ For recovery from any type of failure data values prior to

modification (BFIM - BeFore Image) and the new value after
modification (AFIM – AFter Image) are required.

■ These values and other information is stored in a sequential
file called Transaction log. A sample log is given below.
Back P and Next P point to the previous and next log
records of the same transaction.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

4 Data Update

■ Immediate Update: As soon as a data item is modified in

cache, the disk copy is updated.

■ Deferred Update: All modified data items in the cache is

written either after a transaction ends its execution or after a

fixed number of transactions have completed their

execution.

■ Shadow update: The modified version of a data item does

not overwrite its disk copy but is written at a separate disk

location.

■ In-place update: The disk version of the data item is

overwritten by the cache version.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

6 Transaction Roll-back (Undo) and Roll-

Forward (Redo)

■ To maintain atomicity, a transaction’s operations

are redone or undone.

■ Undo: Restore all BFIMs on to disk (Remove all

AFIMs).

■ Redo: Restore all AFIMs on to disk.

■ Database recovery is achieved either by

performing only Undos or only Redos or by a

combination of the two. These operations are

recorded in the log as they happen.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Write-Ahead Logging

■ When in-place update (immediate or deferred) is used

then log is necessary for recovery and it must be available

to recovery manager. This is achieved by Write-Ahead

Logging (WAL) protocol. WAL states that

■ For Undo: Before a data item’s AFIM is flushed to the

database disk (overwriting the BFIM) its BFIM must be

written to the log and the log must be saved on a stable

store (log disk).

■ For Redo: Before a transaction executes its commit

operation, all its AFIMs must be written to the log and the

log must be saved on a stable store.

5/11/2015

12

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

7 Checkpointing

■ Time to time (randomly or under some criteria) the database

flushes its buffer to database disk to minimize the task of

recovery. The following steps defines a checkpoint

operation:

1. Suspend execution of transactions temporarily.

2. Force write modified buffer data to disk.

3. Write a [checkpoint] record to the log, save the log to disk.

4. Resume normal transaction execution.

■ During recovery redo or undo is required to transactions

appearing after [checkpoint] record.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Steal/No-Steal and Force/No-Force
■ Possible ways for flushing database cache to database

disk:
1. Steal: Cache can be flushed before transaction commits.
2. No-Steal: Cache cannot be flushed before transaction commit.
3. Force: Cache is immediately flushed (forced) to disk.
4. No-Force: Cache is deferred until transaction commits

■ These give rise to four different ways for handling recovery:
■ Steal/No-Force (Undo/Redo)
■ Steal/Force (Undo/No-redo)
■ No-Steal/No-Force (Redo/No-undo)
■ No-Steal/Force (No-undo/No-redo)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

8 Recovery Scheme

■ Deferred Update (No Undo/Redo)

■ The data update goes as follows:

■ A set of transactions records their updates in the
log.

■ At commit point under WAL scheme these updates
are saved on database disk.

■ After reboot from a failure the log is used to redo
all the transactions affected by this failure. No
undo is required because no AFIM is flushed to
the disk before a transaction commits.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Deferred Update with concurrent users

■ This environment requires some concurrency control
mechanism to guarantee isolation property of transactions.
In a system recovery transactions which were recorded in
the log after the last checkpoint were redone. The recovery
manager may scan some of the transactions recorded
before the checkpoint to get the AFIMs.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Deferred Update with concurrent users
■ Two tables are required for implementing this protocol:

■ Active table: All active transactions are entered in this
table.

■ Commit table: Transactions to be committed are entered in
this table.

■ During recovery, all transactions of the commit table are
redone and all transactions of active tables are ignored
since none of their AFIMs reached the database. It is
possible that a commit table transaction may be redone
twice but this does not create any inconsistency because
of a redone is “idempotent”, that is, one redone for an
AFIM is equivalent to multiple redone for the same AFIM.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Recovery Techniques Based on Immediate Update

■ Undo/No-redo Algorithm

■ In this algorithm AFIMs of a transaction are
flushed to the database disk under WAL before it
commits.

■ For this reason the recovery manager undoes all
transactions during recovery.

■ No transaction is redone.

■ It is possible that a transaction might have
completed execution and ready to commit but this
transaction is also undone.

5/11/2015

13

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Recovery Techniques Based on Immediate Update

■ Undo/Redo Algorithm (Single-user environment)

■ Recovery schemes of this category apply undo and
also redo for recovery.

■ In a single-user environment no concurrency control
is required but a log is maintained under WAL.

■ Note that at any time there will be one transaction in
the system and it will be either in the commit table
or in the active table.

■ The recovery manager performs:
■ Undo of a transaction if it is in the active table.

■ Redo of a transaction if it is in the commit table.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Recovery Techniques Based on Immediate Update

■ Undo/Redo Algorithm (Concurrent execution)

■ Recovery schemes of this category applies undo and
also redo to recover the database from failure.

■ In concurrent execution environment a concurrency
control is required and log is maintained under WAL.

■ Commit table records transactions to be committed and
active table records active transactions. To minimize the
work of the recovery manager checkpointing is used.

■ The recovery performs:
■ Undo of a transaction if it is in the active table.

■ Redo of a transaction if it is in the commit table.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Recovery

Shadow Paging

■ The AFIM does not overwrite its BFIM but recorded at

another place on the disk. Thus, at any time a data item

has AFIM and BFIM (Shadow copy of the data item) at

two different places on the disk.

X and Y: Shadow copies of data items

X' and Y': Current copies of data items

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 24

Database

Security

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Introduction to Database Security Issues

(2)

■ Threats to databases

■ Loss of integrity

■ Loss of availability

■ Loss of confidentiality

■ To protect databases against these types of threats four

kinds of countermeasures can be implemented:

■ Access control

■ Inference control

■ Flow control

■ Encryption

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Introduction to Database

Security Issues (3)

■ A DBMS typically includes a database security

and authorization subsystem that is responsible

for ensuring the security portions of a database

against unauthorized access.

■ Two types of database security mechanisms:

■ Discretionary security mechanisms

■ Mandatory security mechanisms

5/11/2015

14

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Introduction to Database

Security Issues (4)

■ The security mechanism of a DBMS must include

provisions for restricting access to the database

as a whole

■ This function is called access control and is

handled by creating user accounts and passwords

to control login process by the DBMS.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Discretionary Access Control Based

on Granting and Revoking Privileges

■ The typical method of enforcing discretionary

access control in a database system is based

on the granting and revoking privileges.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1Types of Discretionary Privileges

■ The account level:

■ At this level, the DBA specifies the particular

privileges that each account holds independently

of the relations in the database.

■ The relation level (or table level):

■ At this level, the DBA can control the privilege to

access each individual relation or view in the

database.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1Types of Discretionary Privileges(2)

■ The privileges at the account level apply to the

capabilities provided to the account itself and can include

■ the CREATE SCHEMA or CREATE TABLE privilege, to

create a schema or base relation;

■ the CREATE VIEW privilege;

■ the ALTER privilege, to apply schema changes such adding

or removing attributes from relations;

■ the DROP privilege, to delete relations or views;

■ the MODIFY privilege, to insert, delete, or update tuples;

■ and the SELECT privilege, to retrieve information from the

database by using a SELECT query.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1Types of Discretionary Privileges(3)

■ The second level of privileges applies to the relation
level

■ This includes base relations and virtual (view) relations.

■ The granting and revoking of privileges generally follow
an authorization model for discretionary privileges known
as the access matrix model where

■ The rows of a matrix M represents subjects (users,
accounts, programs)

■ The columns represent objects (relations, records,
columns, views, operations).

■ Each position M(i,j) in the matrix represents the types of
privileges (read, write, update) that subject i holds on
object j.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1Types of Discretionary Privileges(4)

■ To control the granting and revoking of relation privileges,
each relation R in a database is assigned and owner
account, which is typically the account that was used
when the relation was created in the first place.

■ The owner of a relation is given all privileges on that
relation.

■ In SQL2, the DBA can assign and owner to a whole schema
by creating the schema and associating the appropriate
authorization identifier with that schema, using the CREATE
SCHEMA command.

■ The owner account holder can pass privileges on any of
the owned relation to other users by granting privileges to
their accounts.

5/11/2015

15

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1Types of Discretionary Privileges(5)

■ In SQL the following types of privileges can be granted on
each individual relation R:

■ SELECT (retrieval or read) privilege on R:

■ Gives the account retrieval privilege.

■ In SQL this gives the account the privilege to use the SELECT
statement to retrieve tuples from R.

■ MODIFY privileges on R:

■ This gives the account the capability to modify tuples of R.

■ In SQL this privilege is further divided into UPDATE, DELETE,
and INSERT privileges to apply the corresponding SQL
command to R.

■ In addition, both the INSERT and UPDATE privileges can
specify that only certain attributes can be updated by the
account.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1Types of Discretionary Privileges(6)

■ In SQL the following types of privileges can be
granted on each individual relation R (contd.):

■ REFERENCES privilege on R:

■ This gives the account the capability to reference
relation R when specifying integrity constraints.

■ The privilege can also be restricted to specific
attributes of R.

■ Notice that to create a view, the account must
have SELECT privilege on all relations involved
in the view definition.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.2 Specifying Privileges Using Views

■ The mechanism of views is an important discretionary

authorization mechanism in its own right. For example,

■ If the owner A of a relation R wants another account B to be

able to retrieve only some fields of R, then A can create a

view V of R that includes only those attributes and then

grant SELECT on V to B.

■ The same applies to limiting B to retrieving only certain

tuples of R; a view V’ can be created by defining the view by

means of a query that selects only those tuples from R that

A wants to allow B to access.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.3 Revoking Privileges

■ In some cases it is desirable to grant a privilege

to a user temporarily. For example,

■ The owner of a relation may want to grant the

SELECT privilege to a user for a specific task and

then revoke that privilege once the task is

completed.

■ Hence, a mechanism for revoking privileges is

needed. In SQL, a REVOKE command is included

for the purpose of canceling privileges.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.4 Propagation of Privileges using the

GRANT OPTION

■ Whenever the owner A of a relation R grants a privilege
on R to another account B, privilege can be given to B
with or without the GRANT OPTION.

■ If the GRANT OPTION is given, this means that B can
also grant that privilege on R to other accounts.

■ Suppose that B is given the GRANT OPTION by A and that
B then grants the privilege on R to a third account C, also
with GRANT OPTION. In this way, privileges on R can
propagate to other accounts without the knowledge of the
owner of R.

■ If the owner account A now revokes the privilege granted to
B, all the privileges that B propagated based on that
privilege should automatically be revoked by the system.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example

■ Suppose that the DBA creates four accounts

■ A1, A2, A3, A4

■ and wants only A1 to be able to create base relations.

Then the DBA must issue the following GRANT command

in SQL

GRANT CREATETAB TO A1;

■ In SQL2 the same effect can be accomplished by having

the DBA issue a CREATE SCHEMA command as

follows:

CREATE SCHAMA EXAMPLE AUTHORIZATION A1;

5/11/2015

16

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example (2)

■ User account A1 can create tables under the schema
called EXAMPLE.

■ Suppose that A1 creates the two base relations
EMPLOYEE and DEPARTMENT

■ A1 is then owner of these two relations and hence all the
relation privileges on each of them.

■ Suppose that A1 wants to grant A2 the privilege to insert
and delete tuples in both of these relations, but A1 does
not want A2 to be able to propagate these privileges to
additional accounts:

GRANT INSERT, DELETE ON

EMPLOYEE, DEPARTMENT TO A2;

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example (3)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example (4)

■ Suppose that A1 wants to allow A3 to retrieve information
from either of the two tables and also to be able to
propagate the SELECT privilege to other accounts.

■ A1 can issue the command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT

TO A3 WITH GRANT OPTION;

■ A3 can grant the SELECT privilege on the EMPLOYEE
relation to A4 by issuing:

GRANT SELECT ON EMPLOYEE TO A4;

■ Notice that A4 can’t propagate the SELECT privilege
because GRANT OPTION was not given to A4

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example (5)

■ Suppose that A1 decides to revoke the SELECT

privilege on the EMPLOYEE relation from A3; A1

can issue:

REVOKE SELECT ON EMPLOYEE FROM A3;

■ The DBMS must now automatically revoke the

SELECT privilege on EMPLOYEE from A4, too,

because A3 granted that privilege to A4 and A3

does not have the privilege any more.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example (6)

■ Suppose that A1 wants to give back to A3 a limited capability to
SELECT from the EMPLOYEE relation and wants to allow A3 to be
able to propagate the privilege.

■ The limitation is to retrieve only the NAME, BDATE, and
ADDRESS attributes and only for the tuples with DNO=5.

■ A1 then create the view:

CREATE VIEW A3EMPLOYEE AS

SELECT NAME, BDATE, ADDRESS

FROM EMPLOYEE

WHERE DNO = 5;

■ After the view is created, A1 can grant SELECT on the view
A3EMPLOYEE to A3 as follows:

GRANT SELECT ON A3EMPLOYEE TO A3

WITH GRANT OPTION;

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 An Example (7)

■ Finally, suppose that A1 wants to allow A4 to update only

the SALARY attribute of EMPLOYEE;

■ A1 can issue:

GRANT UPDATE ON EMPLOYEE (SALARY) TO

A4;

■ The UPDATE or INSERT privilege can specify particular

attributes that may be updated or inserted in a relation.

■ Other privileges (SELECT, DELETE) are not attribute

specific.

5/11/2015

17

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.6 Specifying Limits on Propagation of

Privileges

■ Techniques to limit the propagation of privileges

have been developed, although they have not yet

been implemented in most DBMSs and are not a

part of SQL.

■ Limiting horizontal propagation to an integer

number i means that an account B given the

GRANT OPTION can grant the privilege to at most

i other accounts.

■ Vertical propagation is more complicated; it limits

the depth of the granting of privileges.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

3 Mandatory Access Control and Role-Based

Access Control for Multilevel Security

■ The discretionary access control techniques of granting
and revoking privileges on relations has traditionally been
the main security mechanism for relational database
systems.

■ This is an all-or-nothing method:
■ A user either has or does not have a certain privilege.

■ In many applications, and additional security policy is
needed that classifies data and users based on security
classes.

■ This approach as mandatory access control, would
typically be combined with the discretionary access control
mechanisms.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

3.1 Comparing Discretionary Access

Control and Mandatory Access Control

■ Discretionary Access Control (DAC) policies

are characterized by a high degree of flexibility,

which makes them suitable for a large variety of

application domains.

■ The main drawback of DAC models is their

vulnerability to malicious attacks, such as Trojan

horses embedded in application programs.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

3.1 Comparing Discretionary Access

Control and Mandatory Access Control(2)

■ By contrast, mandatory policies ensure a high

degree of protection in a way, they prevent any

illegal flow of information.

■ Mandatory policies have the drawback of being

too rigid and they are only applicable in limited

environments.

■ In many practical situations, discretionary policies

are preferred because they offer a better trade-off

between security and applicability.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 25

Distributed

Databases and

Client-Server

Architectures

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Distributed Database Concepts

■ A transaction can be executed by multiple
networked computers in a unified manner.

■ A distributed database (DDB) processes Unit of
execution (a transaction) in a distributed manner.
A distributed database (DDB) can be defined as

■ A distributed database (DDB) is a collection of
multiple logically related database distributed over
a computer network, and a distributed database
management system as a software system that
manages a distributed database while making the
distribution transparent to the user.

5/11/2015

18

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Distributed Database System
■ Advantages

■ Management of distributed data with different
levels of transparency:

■ This refers to the physical placement of data (files,
relations, etc.) which is not known to the user
(distribution transparency).

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Distributed Database System

■ Advantages (transparency, contd.)
■ The EMPLOYEE, PROJECT, and WORKS_ON tables may

be fragmented horizontally and stored with possible

replication as shown below.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Distributed Database System

■ Advantages (transparency, contd.)

■ Distribution and Network transparency:

■ Users do not have to worry about operational details

of the network.

■ There is Location transparency, which refers to freedom of

issuing command from any location without affecting its

working.

■ Then there is Naming transparency, which allows access

to any names object (files, relations, etc.) from any

location.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Distributed Database System

■ Advantages (transparency, contd.)

■ Replication transparency:

■ It allows to store copies of a data at multiple sites as

shown in the above diagram.

■ This is done to minimize access time to the required

data.

■ Fragmentation transparency:

■ Allows to fragment a relation horizontally (create a

subset of tuples of a relation) or vertically (create a

subset of columns of a relation).

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Distributed Database System

■ Other Advantages

■ Increased reliability and availability:

■ Reliability refers to system live time, that is, system

is running efficiently most of the time. Availability is

the probability that the system is continuously

available (usable or accessible) during a time

interval.

■ A distributed database system has multiple nodes

(computers) and if one fails then others are

available to do the job.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Fragmentation, Replication and

Allocation

■ Data Fragmentation

■ Split a relation into logically related and correct

parts. A relation can be fragmented in two ways:

■ Horizontal Fragmentation

■ Vertical Fragmentation

5/11/2015

19

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Fragmentation, Replication and

Allocation

■ Horizontal fragmentation

■ It is a horizontal subset of a relation which contain those of

tuples which satisfy selection conditions.

■ Consider the Employee relation with selection condition

(DNO = 5). All tuples satisfy this condition will create a

subset which will be a horizontal fragment of Employee

relation.

■ A selection condition may be composed of several

conditions connected by AND or OR.

■ Derived horizontal fragmentation: It is the partitioning of a

primary relation to other secondary relations which are

related with Foreign keys.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Fragmentation, Replication and

Allocation

■ Vertical fragmentation

■ It is a subset of a relation which is created by a subset of

columns. Thus a vertical fragment of a relation will contain

values of selected columns. There is no selection condition

used in vertical fragmentation.

■ Consider the Employee relation. A vertical fragment of can

be created by keeping the values of Name, Bdate, Sex, and

Address.

■ Because there is no condition for creating a vertical

fragment, each fragment must include the primary key

attribute of the parent relation Employee. In this way all

vertical fragments of a relation are connected.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Fragmentation, Replication and

Allocation

■ Data Replication

■ Database is replicated to all sites.

■ In full replication the entire database is replicated and in

partial replication some selected part is replicated to some

of the sites.

■ Data replication is achieved through a replication schema.

■ Data Distribution (Data Allocation)

■ This is relevant only in the case of partial replication or

partition.

■ The selected portion of the database is distributed to the

database sites.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Distributed Database Systems

■ Homogeneous
■ All sites of the database

system have identical
setup, i.e., same database
system software.

■ The underlying operating
system may be different.

■ For example, all sites run
Oracle or DB2, or Sybase
or some other database
system.

■ The underlying operating
systems can be a mixture
of Linux, Window, Unix,
etc.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Distributed Database Systems

■ Heterogeneous

■ Federated: Each site may run different database system but the
data access is managed through a single conceptual schema.

■ This implies that the degree of local autonomy is minimum. Each site
must adhere to a centralized access policy. There may be a global
schema.

■ Multidatabase: There is no one conceptual global schema. For
data access a schema is constructed dynamically as needed by
the application software.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Distributed Database Systems

■ Federated Database Management Systems
Issues

■ Differences in data models:

■ Relational, Objected oriented, hierarchical, network,
etc.

■ Differences in constraints:

■ Each site may have their own data accessing and
processing constraints.

■ Differences in query language:

■ Some site may use SQL, some may use SQL-89,
some may use SQL-92, and so on.

5/11/2015

20

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Query Processing in Distributed

Databases

■ Issues

■ Cost of transferring data (files and results) over the network.

■ This cost is usually high so some optimization is necessary.

■ Example relations: Employee at site 1 and Department at Site

2

■ Employee at site 1. 10,000 rows. Row size = 100 bytes. Table

size = 106 bytes.

■ Department at Site 2. 100 rows. Row size = 35 bytes. Table

size = 3,500 bytes.

■ Q: For each employee, retrieve employee name and

department name Where the employee works.

■ Q: ΠFname,Lname,Dname (Employee Dno = Dnumber Department)

DnoSuperssnSalarySexAddressBdateSSNLnameMinitFname

MgrstartdateMgrssnDnumberDname

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Query Processing in Distributed

Databases

■ Result

■ The result of this query will have 10,000 tuples,

assuming that every employee is related to a

department.

■ Suppose each result tuple is 40 bytes long. The

query is submitted at site 3 and the result is sent to

this site.

■ Problem: Employee and Department relations are

not present at site 3.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Client-Server Database Architecture

■ It consists of clients running client software, a set

of servers which provide all database

functionalities and a reliable communication

infrastructure.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 26

Enhanced Data

Models for

Advanced

Applications

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Active Database Concepts and

Triggers

Generalized Model for Active Databases and

Oracle Triggers

■ Triggers are executed when a specified

condition occurs during insert/delete/update

■ Triggers are action that fire automatically based on

these conditions

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Event-Condition-Action (ECA) Model

Generalized Model (cont.)

■ Triggers follow an Event-condition-action (ECA) model

■ Event:

■ Database modification

■ E.g., insert, delete, update),

■ Condition:

■ Any true/false expression

■ Optional: If no condition is specified then condition is always true

■ Action:

■ Sequence of SQL statements that will be automatically

executed

5/11/2015

21

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Row-Level versus Statement-level

Generalized Model (cont.)

■ Triggers can be

■ Row-level

■ FOR EACH ROW specifies a row-level trigger

■ Statement-level

■ Default (when FOR EACH ROW is not specified)

■ Row level triggers

■ Executed separately for each affected row

■ Statement-level triggers

■ Execute once for the SQL statement,

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Condition

Generalized Model (cont.)

■ Any true/false condition to control whether a

trigger is activated on not

■ Absence of condition means that the trigger will

always execute for the even

■ Otherwise, condition is evaluated

■ before the event for BEFORE trigger

■ after the event for AFTER trigger

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Action

Generalized Model (cont.)

■ Action can be

■ One SQL statement

■ A sequence of SQL statements enclosed between

a BEGIN and an END

■ Action specifies the relevant modifications

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Active Database Concepts and

Triggers

Design and Implementation Issues for Active
Databases

■ An active database allows users to make the
following changes to triggers (rules)

■ Activate

■ Deactivate

■ Drop

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Active Database Concepts and

Triggers

Design and Implementation Issues (cont.)

■ Immediate consideration

■ Part of the same transaction and can be one of the following

depending on the situation

■ Before

■ After

■ Instead of

■ Deferred consideration

■ Condition is evaluated at the end of the transaction

■ Detached consideration

■ Condition is evaluated in a separate transaction

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Temporal Database Concepts

Time Representation, … (cont.)

■ A calendar organizes time into different time

units for convenience.

■ Accommodates various calendars

■ Gregorian (western)

■ Chinese

■ Islamic

■ Hindu

■ Jewish

■ Etc.

5/11/2015

22

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Temporal Database Concepts

Time Representation, … (cont.)

■ Transaction time

■ The time when the information from a certain

transaction becomes valid

■ Bitemporal database

■ Databases dealing with two time dimensions

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Temporal Database Concepts

Incorporating Time in Relational Databases Using

Tuple Versioning

■ Add to every tuple

■ Valid start time

■ Valid end time

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Temporal Database Concepts

Incorporating Time in Object-Oriented Databases
Using Attribute Versioning

■ A single complex object stores all temporal
changes of the object

■ Time varying attribute

■ An attribute that changes over time

■ E.g., age

■ Non-Time varying attribute

■ An attribute that does not changes over time

■ E.g., date of birth

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Spatial Databases

Spatial Database Concepts

■ Keep track of objects in a multi-dimensional

space

■ Maps

■ Geographical Information Systems (GIS)

■ Weather

■ In general spatial databases are n-dimensional

■ This discussion is limited to 2-dimensional spatial

databases

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Spatial Databases

Spatial Database Concepts

■ Typical Spatial Queries

■ Range query: Finds objects of a particular type within a

particular distance from a given location

■ E.g., Taco Bells in Pleasanton, CA

■ Nearest Neighbor query: Finds objects of a particular type

that is nearest to a given location

■ E.g., Nearest Taco Bell from an address in Pleasanton, CA

■ Spatial joins or overlays: Joins objects of two types based

on some spatial condition (intersecting, overlapping, within

certain distance, etc.)

■ E.g., All Taco Bells within 2 miles from I-680.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Spatial Databases

Spatial Database Concepts

■ R-trees

■ Technique for typical spatial queries

■ Group objects close in spatial proximity on the

same leaf nodes of a tree structured index

■ Internal nodes define areas (rectangles) that cover

all areas of the rectangles in its subtree.

■ Quad trees

■ Divide subspaces into equally sized areas

5/11/2015

23

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multimedia Databases

Multimedia Database Concepts

■ In the years ahead multimedia information

systems are expected to dominate our daily lives.

■ Our houses will be wired for bandwidth to handle

interactive multimedia applications.

■ Our high-definition TV/computer workstations will

have access to a large number of databases,

including digital libraries, image and video

databases that will distribute vast amounts of

multisource multimedia content.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multimedia Databases

■ Types of multimedia data are available in current
systems (cont.)

■ Images: Includes drawings, photographs, and so
forth, encoded in standard formats such as bitmap,
JPEG, and MPEG. Compression is built into JPEG
and MPEG.

■ These images are not subdivided into components.
Hence querying them by content (e.g., find all
images containing circles) is nontrivial.

■ Animations: Temporal sequences of image or
graphic data.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multimedia Databases

■ Nature of Multimedia Applications:

■ Multimedia data may be stored, delivered, and

utilized in many different ways.

■ Applications may be categorized based on their

data management characteristics.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 28

Data Mining

Concepts

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Definitions of Data Mining

■ The discovery of new information in terms of

patterns or rules from vast amounts of data.

■ The process of finding interesting structure in

data.

■ The process of employing one or more computer

learning techniques to automatically analyze and

extract knowledge from data.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Warehousing

■ The data warehouse is a historical database

designed for decision support.

■ Data mining can be applied to the data in a

warehouse to help with certain types of decisions.

■ Proper construction of a data warehouse is

fundamental to the successful use of data mining.

5/11/2015

24

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Knowledge Discovery in Databases

(KDD)

■ Data mining is actually one step of a larger
process known as knowledge discovery in
databases (KDD).

■ The KDD process model comprises six phases
■ Data selection
■ Data cleansing
■ Enrichment
■ Data transformation or encoding
■ Data mining
■ Reporting and displaying discovered knowledge

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Goals of Data Mining and Knowledge

Discovery (PICO)

■ Prediction:

■ Determine how certain attributes will behave in the

future.

■ Identification:

■ Identify the existence of an item, event, or activity.

■ Classification:

■ Partition data into classes or categories.

■ Optimization:

■ Optimize the use of limited resources.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Association Rules

■ Association rules are frequently used to generate rules
from market-basket data.

■ A market basket corresponds to the sets of items a
consumer purchases during one visit to a supermarket.

■ The set of items purchased by customers is known as an
itemset.

■ An association rule is of the form X=>Y, where X ={x1,
x2, …., xn }, and Y = {y1,y2, …., yn} are sets of items, with
xi and yi being distinct items for all i and all j.

■ For an association rule to be of interest, it must satisfy
a minimum support and confidence.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Generating Association Rules

■ The general algorithm for generating association

rules is a two-step process.

■ Generate all itemsets that have a support

exceeding the given threshold. Itemsets with this

property are called large or frequent itemsets.

■ Generate rules for each itemset as follows:

■ For itemset X and Y a subset of X, let Z = X – Y;

■ If support(X)/Support(Z) > minimum confidence, the

rule Z=>Y is a valid rule.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Generating Association Rules:

The Apriori Algorithm

■ The Apriori algorithm was the first algorithm

used to generate association rules.

■ The Apriori algorithm uses the general algorithm

for creating association rules together with

downward closure and anti-monotonicity.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Generating Association Rules:

Frequent-Pattern Tree Algorithm

■ The Frequent-Pattern Tree Algorithm reduces
the total number of candidate itemsets by
producing a compressed version of the database
in terms of an FP-tree.

■ The FP-tree stores relevant information and
allows for the efficient discovery of frequent
itemsets.

■ The algorithm consists of two steps:

■ Step 1 builds the FP-tree.

■ Step 2 uses the tree to find frequent itemsets.

5/11/2015

25

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Classification

■ Classification is the process of learning a model

that is able to describe different classes of data.

■ Learning is supervised as the classes to be

learned are predetermined.

■ Learning is accomplished by using a training set

of pre-classified data.

■ The model produced is usually in the form of a

decision tree or a set of rules.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Clustering

■ Unsupervised learning or clustering builds

models from data without predefined classes.

■ The goal is to place records into groups where

the records in a group are highly similar to each

other and dissimilar to records in other groups.

■ The k-Means algorithm is a simple yet effective

clustering technique.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 29

Overview of Data

Warehousing and

OLAP

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Purpose of Data Warehousing

■ Traditional databases are not optimized for data access only
they have to balance the requirement of data access with the
need to ensure integrity of data.

■ Most of the times the data warehouse users need only read
access but, need the access to be fast over a large volume of
data.

■ Most of the data required for data warehouse analysis comes
from multiple databases and these analysis are recurrent and
predictable to be able to design specific software to meet the
requirements.

■ There is a great need for tools that provide decision makers
with information to make decisions quickly and reliably based
on historical data.

■ The above functionality is achieved by Data Warehousing and
Online analytical processing (OLAP)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Comparison with Traditional

Databases

■ Data Warehouses are mainly optimized for appropriate
data access.

■ Traditional databases are transactional and are optimized for
both access mechanisms and integrity assurance measures.

■ Data warehouses emphasize more on historical data as
their main purpose is to support time-series and trend
analysis.

■ Compared with transactional databases, data warehouses
are nonvolatile.

■ In transactional databases transaction is the mechanism
change to the database. By contrast information in data
warehouse is relatively coarse grained and refresh policy
is carefully chosen, usually incremental.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Classification of Data Warehouses

■ Generally, Data Warehouses are an order of magnitude
larger than the source databases.

■ The sheer volume of data is an issue, based on which
Data Warehouses could be classified as follows.

■ Enterprise-wide data warehouses
■ They are huge projects requiring massive investment of time

and resources.

■ Virtual data warehouses
■ They provide views of operational databases that are

materialized for efficient access.

■ Data marts
■ These are generally targeted to a subset of organization, such

as a department, and are more tightly focused.

5/11/2015

26

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Modeling for Data Warehouses

■ Traditional Databases generally deal with two-

dimensional data (similar to a spread sheet).

■ However, querying performance in a multi-

dimensional data storage model is much more

efficient.

■ Data warehouses can take advantage of this

feature as generally these are

■ Non volatile

■ The degree of predictability of the analysis that will

be performed on them is high.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-dimensional Schemas

■ Multi-dimensional schemas are specified using:

■ Dimension table

■ It consists of tuples of attributes of the dimension.

■ Fact table

■ Each tuple is a recorded fact. This fact contains

some measured or observed variable (s) and

identifies it with pointers to dimension tables. The

fact table contains the data, and the dimensions to

identify each tuple in the data.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-dimensional Schemas

■ Two common multi-dimensional schemas are

■ Star schema:

■ Consists of a fact table with a single table for each

dimension

■ Snowflake Schema:

■ It is a variation of star schema, in which the

dimensional tables from a star schema are

organized into a hierarchy by normalizing them.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-dimensional Schemas

■ Star schema:

■ Consists of a fact table with a single table for each

dimension.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-dimensional Schemas

■ Indexing

■ Data warehouse also utilizes indexing to support

high performance access.

■ A technique called bitmap indexing constructs a bit

vector for each value in domain being indexed.

■ Indexing works very well for domains of low

cardinality.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Building A Data Warehouse

■ The Design of a Data Warehouse involves

following steps.

■ Acquisition of data for the warehouse.

■ Ensuring that Data Storage meets the query

requirements efficiently.

■ Giving full consideration to the environment in

which the data warehouse resides.

