Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

SNMP Management: SNMPv2

OBJECTIVES

o Community-based security o SNMP MIB modifications

o SNMPv2 enhancements o [ncompatibility with SNMPv1
= Additional messages * Proxy server
= Formalization of SMT s Bilingual manager

o Get-bulk request and information-requiest

SNMPv1, which was originally called SNMP, was developed as an interim management protocol with
OSI as the ultimate network management protocol. A placeholder, CMOT (CMIP over TCP/IP), was cre-
ated in the Internet Management Information Base (MIB) for migrating from SNMP to CMIP. But the
“best-laid plans...” never came about. SNMP caught on in the industry. Major vendors had incorporated
SNMP modules in their network systems and components. SNMP now needed further enhancements.

Version 2 of Simple Network Management Protocol, SNMPv2, was developed when it became obvi-
ous that OST network management standards were not going to be implemented in the near future. The
working group that was commissioned by the IETF to define SNMPv2 released it in 1996. It is also a
community-based administrative framework similar to SNMPv1 defined in STD 15 [RFC 1157], STD
16 [RFC 1155, 1212], and STD 17 [RFC 1213]. Although the original version was known as SNMP, it
is now referred to as SNMPv1 to distinguish it from SNMPv2,

6.1 MAJOR CHANGES IN SNMPv2

Several significant changes were introduced in SNMPv2. One of the most significant changes was to
improve the security function that SNMPv1 lacked. Unfortunately, after significant effort, due to lack of
consensus, this was dropped from the final specifications, and SNMPv2 was released with the rest of the

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 207

changes. The security function continued to be implemented on an administrative framework based on
the community name and the same administrative framework as in SNMPv1 was adopted for SNMPv2.
SNMPv2 Working Group has presented a summary of the community-based Administrative Framework
for the SNMPv2 framework, and referred to it as SNMPv2C in RFC 1901. RFC 1902 through RFC
1907 present the details on the framework. There are significant differences between the two versions
of SNMP, and unfortunately version 2 is not backward compatible with version 1. RFC 1908 presents
implementation schemes for the coexistence of the two versions.

The basic components of network management in SNMPv2 are the same as version 1. They are the
agent and the manager, both performing the same functions. The manager-to-manager communication,
shown in Figure 4.8, is formalized in version 2 by adding an additional message. Thus, the organiza-
tional model in version 2 remains essentially the same. In spite of the lack of security enhancements,
major improvements to the architecture have been made in SNMPv2. We will list some of the highlights
that would motivate the reader’s interest in SNMPv2.

Bulk Data Transfer Message: Two significant messages were added. The first is the ability to reg-
uest and receive bulk data using the get-bulk message. This speeds up the get-next-request process and
is especially useful to retrieve data from tables.

Manager-to-Manager Message: The second additional message deals with interoperability between
two network management systems. This extends the communication of management messages between
management systems and thus makes network management systems interoperable.

Structure of Management Information (SMI): In SNMPv1, SMI is defined as STD 16, which is
described in RFCs 1155 and 1212, along with RFC 1215, which describes traps. They have been con-
solidated and rewritten in RFCs 1902—-1904 for SMI in SNMPv2. RFC 1902 deals with SMIv2, RFC
1903 with textual conventions, and RFC 1904 with conformances.

SMiv2 is divided into three parts: module definitions, object definitions, and trap definitions. An
ASN.1 macro, MODULE-IDENTITY, is used to define an information module. It concisely conveys
the semantics of the information module. The OBJECT-TYPE macro defines the syntax and semantics
of a managed object. The trap is also termed notification and is defined by a NOTIFICATION-TYPE
macro.

Textual Conventions are designed to help define new data types. They are also intended to make the
semantics consistent and clear to the human reader. Although new data types could have been created
using new ASN.1 class and tag, the decision was made to use the existing defined class types and apply
restrictions to them.

Conformance Statements help the customer objectively compare features of various products. It
also keeps vendors honest in claiming their product as being compatible with a given SNMP version.
Compliance defines a minimum set of capabilities. Additional capabilities may be offered as options in
the product by vendors.

Table Enhancements: Using a newly defined columnar object with a Syntax clause, RowStatus,
conceptual rows could be added to or deleted from an aggregate object table. Further, a table can be
expanded by augmenting another table to it, which is helpful in adding additional columnar objects to
an existing aggregate object.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

208 « Network Management

internet
{1361}

SNMPv2

directory mgmt experimental private security snmpv2

(1) (2)) (4) (5) (6)

Figure 6.1 SNMPv2 Internet Group

MIB Enhancements: In SNMPv2, the Internet node in the MIB has two new subgroups: security and
snmpV2, as shown in Figure 6.1. There are significant changes to System and SNMP groups of version
1. There are changes to the System group made under mib-2 node in the MIB. The SNMP entities in
version 2 are a hybrid, with some entities from the SNMP group, and the rest from the groups under the
newly created snmpV2 node.

Transport Mappings: There are several changes to the communication model in SNMPv2. Although
use of UDP is the preferred transport protocol mechanism for SNMP management, other transport pro-
tocols could be used with SNMPv2. The mappings needed to define other protocols on to UDP are the
subject of RFC 1906.

6.2 SNMPv2 SYSTEM ARCHITECTURE

SNMPv2 system architecture looks essentially the same as that of version 1, as shown in Figure
4.9. However, there are two significant enhancements in SNMPv2 architecture, which are shown in
Figure 6.2. First, there are seven messages instead of five as in Figure 4.9. Second, two manager appli-
cations can communicate with each other at the peer level. Another message, report message, is missing
from Figure 6.2. This is because even though it has been defined as a message, SNMPv2 Working Group
did not specify its details. It is left for the implementers to generate the specifications. It is not currently
being used and is hence omitted from the figure.

The messages get-request, get-next request, and set-request are the same as in version 1 and are gener-
ated by the manager application. The message, response, is also the same as get-response in version 1,
and is now generated by both agent and manager applications. It is generated by the agent application
in response to a get or set message from the manager application. It is also generated by the manager
application in response to an inform-request message from another manager application.

An inform-request message is generated by a manager application and is transmitted to another
manager application. As mentioned above, the receiving manager application responds with a response
message. This set of communication messages is a powerful enhancement in SNMPv2, since it makes
two network management systems interoperable.

The message get-bulk-request is generated by manager application. It is used to transfer large amounts
of data from the agent to the manager, especially if it includes retrieval of table data. The retrieval is fast
and efficient. The receiving entity generates and fills data for each entry in the request and transmits all
the data as a response message back to the originator of the request.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17

USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 209
SNMP Manager SNMP Manager SNMP Agent
Applicatid Applicatign
SNMP Manager | PDU| SNMP Manager | | PDU|_ SNMP Agent
Application - Application J" o Application
o hﬁ“%“ A Qj[adw—J-“ *%' -g - Q“ “ﬁ“'}b" A
=10 — b7 w 0 o
$1Z12 23|l s |8|z|2| &gl 218188 o] 8
glzlel 32| o |22 Tlc|d& © |Z18|al2lg
o o = T | oT| € T o oL oo N S |0 @ ol gl
HEEHEE AR HEIFEEER:
ElL| D] 3|E|lo £ cE =0 |3|3l38 g O (X |=Z|w|F e
slefc|R|o|@ S8l F|R| o= o2 |8 el E
,.9 =20 I B) — % c o L& % “65 g -C'} w| = c
= o| = 55 o|z|B @
=2 Y Y Y Y o O Yy v
SNMP SNMP
SNMP PDU SNMP PDU SNMP
- -
UDP UDP UDP
IP IP IP
DLC DLC DLC
PHY PHY PHY

Physical Medium Physical Medium

Figure 6.2 SNMPv2 Network Management Architecture

An SNMPv2-trap event, known as trap in version 1, is generated and transmitted by an agent process
when an exceptional situation occurs. The destination to which it is sent is implementation-dependent.
The PDU structure has been modified to be consistent with other PDUs.

Another enhancement in SNMPv2 over version 1 is the mapping of the SNMP layer over multiple
transport domains. An example of this is shown in Figure 6.3, in which an SNMPv2 agent riding over a
connectionless OSI transport layer protocol, Connectionless-Mode Network Service (CLNS), commu-
nicates with an SNMPv2 manager over the UDP transport layer. RFC 1906, which describes transport
mappings, addresses a few well-known fransport layer mappings; others can be added using a similar
structure.

Details on the MIB relating to SNMPv2 are covered in Section 6.4 and communication protocol asp-
ects of messages in Section 6.5. Although not a standard, RFC 1283 specifies SNMP over Connection-

Oriented Transport Service (COTS), a connection-oriented OSI transport protocol. However, SNMP is
not specified over connection-oriented Internet protocol, TCP.

6.3 SNMPv2 STRUCTURE OF MANAGEMENT

INFORMATION

There are several changes to SMI in version 2, as well as enhancements to SMIv2 over that of SMIvl1.

As stated earlier, SMIv2 [RFC 1902] is divided into three parts: module definitions, object definitions,
and notification definitions.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17

USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

210 « Network Management

SNMP Manager SNMP Agent
SNMP Manager _ APDU _ SNMP Agent
Application b - Application
r Y A A A A A A
B ¥ a k7 - o
@ ol o | = S Q [©
ola | | 2| 8 = a2 28 <
2818|823 gc¢ €181 2|3| 8¢
el | L | 5| 8| 9 = =gl 18 9 =&
1 @ x B = 4 £ o x ~ = o £
El<| 2| 2| | § < 2|3 |s| 8 ¢
ol &S| « | Z| & = @ S|z | 3|8 o &
< 5|9 5| ®
(o)}
4 A\ Y Y A Y
SNMP SNMP SNMP
PDU
ubP CLNS
IP 1P
DLC DLC
PHY PHY

Physical Medium

Partial Legend:
CLNS: Connectionless-Mode Network Service
UDP: User Datagram Protocol
DLC: Data Link Control

Figure 6.3 SNMPvZ2 Network Management Architecture on Multiple Transport Domains

We introduced the concept of a module in Section 3.6.1, which is a group of assignments that are
related to each other. Module definitions describe the semantics of an information module and are for-
mally defined by an ASN.1 macro, MODULE-IDENTITY.

Object definitions are used to describe managed objects. The OBJECT-TYPE macro that we dis-

cussed in Section 4.7.3 is used to define a managed object. OBJECT-TYPE conveys both syntax and
semantics of the managed object.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 211

Notification in SMIv2 is equivalent to trap in SMIvl1. In SMIvl, trap is formally specified by an
ASN.1 macro, TRAP-TYPE. In SMIv2, notification is specified by an ASN.1 macro, NOTIFICATION-
TYPE, and conveys both its syntax and semantics.

In addition to the above three parts, there is an additional part defined in SM1v2, which formalizes the
assignment of OBJECT IDENTIFIER. Even though we have two assignments in SMIv1, namely, object
name and trap, they are not formally structured. In SMIv2, an ASN.1 macro, OBJECT-IDENTITY is
introduced for the assignment of object name and notification to OBJECT IDENTIFIER, as shown in
Figure 6.4.

6.3.1 SMI Definitions for SNMPv2

Figure 6.4 shows a skeleton of the SMIv2 and the reader is referred to RFC 1902 for a complete set
of definitions. We have taken the liberty of presenting the definitions with some additional comments
(marked by *) and structural indentations to bring out clearly the BEGIN and END of macros.

Definitions begin with the high-level nodes under the Internet MIB. Two additional nodes, security
and SNMPv2, are introduced. The security node is just a placeholder and is reserved for the future. The
snmpV2 node has three subnodes: snmpDomains, snmpProxys, and snmpModules. The MIB tree show-
ing all these nodes defined in SMIv2 is presented in Figure 6.5.

6.3.2 Information Modules

RFC 1902 defines information module as an ASN.1 module defining information relating to network
management. SMI describes how to use a subset of ASN.1 to define an information module.

There are three kinds of information modules that are defined in SNMPv2. They are MIB modules,
compliance statements for MIB modules, and capability statements for agent implementations. This
classification scheme does not impose rigid taxonomy in the definition of managed objects. Figure 6.6
shows an example where conformance information and compliance statements are part of the SNMP
group of SNMPv2 MIB. As we shall see later, the SNMP group in SNMPv2 contains some of the obj-
ects of version 1 and some new objects and object groups (to be defined later). It also has information
on conformance requirements. In the example shown, the mandatory groups in implementing SNMPv2
are snmpGroup, snmpSetGroup, systemGroup, and snmpBasicNotificationsGroup. Thus, if a network
component vendor claims that its management agent is SNMPv2 compliant, these groups as they are
defined in SNMPv2 should be implemented.

MIB specifications contain only compliant statements in them. The agent-capability statements
are part of implementation in the agent by the vendor. It might be included as part of an “enterprise-
specific” module.

The information on SMIv2 has been split into three parts in the documentation. MIB modules for
SMIv2 are covered in RFC 1902. The textual conventions to be used to describe MIB modules have
been formalized in RFC 1903. The conformance information, which encompasses both compliance and
agent capabilities, is covered in RFC 1904.

6.3.3 SNMP Keywords

Keywords used in the specifications of SMIv2 are a subset of ASN.1. But it is a different subset from
that of SMIv1. Table 6.1 shows the comparison of keywords used in the two versions. We will address

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

212 e« Network Management

/SNMPVZ—SMI DEFINITIONS ::= h

BEGIN

-- the path to the root
org OBJECT IDENTIFIER ::= {iso 3}

private OBJECT IDENTIFIER ::= {internet 4}
enterprises OBJECT IDENTIFIER ::= {private 1}
security OBJECT IDENTIFIER ::= {internet 5}
snmpV2 OBJECT IDENTIFIER ::= {internet 6}
-- transport domains
snmpDomains OBJECT IDENTIFIER ::= {shmpV2 1}
-- transport proxies
snmpProxys OBJECT IDENTIFIER ::= {shmpV2 2}
--module identities
snmpModules OBJECT IDENTIFIER ::= {shmpV2 3}
-- definitions for information modules
MODULE-IDENTITY MACRO
BEGIN
<clauses> ::= <values>
END
-- definitions for OBJECT IDENTIFIER assignments*
OBJECT-IDENTITY MACRO ::=
BEGIN
<clauses> ::= <values>
END

--names of objects
objectName ::= OBJECT IDENTIFIER
notificationName ::= OBJECT IDENTIFIER
-- syntax of objects
<objectSyntax Productions>
<dataType Productions>
-- definition of objects
OBJECT-TYPE MACRO ::=
BEGIN
<clauses> ::= <values>
END
-- definition for notification
NOTIFICATION-TYPE MACRO ::=
BEGIN
<clauses> ::= <values>
END

-- definition of administration identifiers
zeroDotZero ::={ 0 0 } -- a value for null identifiers

\END J
Figure 6.4 Definitions of SMI for SNMPv2 (Skeleton)

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 213

internet
{1361}
directory mgmt experimental private security snmpV2
(1) (2 (3) (4) (5) (6)
snmpDomains snmpProxys snmpModules

(1) (2) (€)
Figure 6.5 SNMPvV2 Internet Nodes Defined in SMIv2

the new keywords for specific applications as we discuss them. It is worth noting here that some of the
general keywords have been replaced with limited keywords. Thus, Counter is replaced by Counter32,
Gauge by Gauge32, and INTEGER by Integer32. The NetworkAddress is deleted from use and only
IpAddress is used.

It is also to be noted that reference in IMPORTS clause or in clauses of SNMPv2 macros to an infor-
mational module is not through “descriptor” as it was in version 1. It is referenced through specifying
its module name, an enhancement in SNMPv2.

It should be observed that the expansion of the ASN.1 module macro occurs during the implementa-
tion phase of a product, and not at run-time.

6.3.4 Module Definitions

The MODULE-IDENTITY macro is added to SMIv2 specifying an informational module. It provides
administrative information regarding the informational module as well as revision history. SMIv2 MOD-
ULE-IDENTITY macro is presented in Figure 6.7.

Figure 6.8 shows an example of a MODULE-IDENTITY macro (a real-world example of a non-
existent module) for a network component vendor, InfoTech Services, Inc. (isi), which is updating their
private-enterprises-isi MIB module {private.enterprises.isi}.

The last updated clause is mandatory and contains the date and time in UTC time format [RFC 1902].
“Z” refers to Greenwich Mean Time. The Text clause uses the NVT ASCII character set [RFC 854],
which is a printable set. All clauses, except the Revision clause, must be present in the macro.

6.3.5 Object Definitions

The OBJECT-IDENTITY macro has been added in SMIv2 and is used to define information about
an OBJECT-IDENTIFIER. It is presented in Figure 6.9. The STATUS clause has one of three values:
current, deprecated, or obsolete. The value mandatory in SM1Iv1 is replaced with the value current in
SMIv2. The value optional is not used in SMIv2. The new value, deprecated, has been added to define

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

214 e« Network Management

4 N

SNMPv2-MIB DEFINITIONS ::=
BEGIN

snmpMIB MODULE IDENTITY ::= {snmpModules 1}

snmpMIBObjects OBJECT IDENTIFIER ::= {snmpMIB 1}

-- the SNMP group

snmp OBJECT IDENTIFIER ::= {mib-2 11}
snmplInPkts OBJECT-TYPE ::= {snmp 1}
snmpOutPkts OBJECT-TYPE ::= { snmp 2}

snmpSet OBJECT IDENTIFIER ::= {snmpmibObjects 6}
snmpSetSerialNo OBJECT-TYPE ::= { snmpSet 1}

-- conformance information
snmpMIBConformance
OBJECT IDENTIFIER ::= {snmpMIB 2}
snmpMIBCompliances
OBJECT IDENTIFIER ::= {snmpMIBConformance 1}
snmpMIBGroups OBJECT IDENTIFIER ::= {snmpMIBConformance 2}

-- compliance statements

snmpBasicCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
“The compliance statement for SNMPv2 entities which
implement the SNMPv2 MIB.”
MODULE -- this module
MANDATORY-GROUPS {snmpGroup, snmpSetGroup,
systemGroup,
snmpBasicNotificationsGroup}
GROUP snmpCommunityGroup
DESCRIPTION
“This group is mandatory for SNMPv2 entities which support
community-based authentication.”
= {snmpMIBCompliances 2}

-- units of conformance

snmpGroup OBJECT-GROUP ::= {snmpMIBGroups 8}
snmpCommunityGroup ~ OBJECT-GROUP ::= {shrmpMIBGroups 9}
snmpObsoleteGroup OBJECT-GROUP ::= {snmpMIBGroups 10}

END

- /

Figure 6.6 Example of the SNMP Group including Conformance and Compliance in
SNMPv2 MIB

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 215

Table 6.1 SNMP Keywords

KEYWORD SNMPV1 SNMPV2
ACCESS
AGENT-CAPABILITIES
AUGMENTS

BEGIN

BITS

CONTACT-INFO
CREATION-REQUIRES
Counter

Counter32

Counter64
DEFINITIONS

DEFVAL

DESCRIPTION
DISPLAY-HINT

END

ENTERPRISE

FROM

GROUP

Gauge

Gauge32

IDENTIFIER

IMPLIED

IMPORTS

INCLUDES

INDEX

INTEGER

Integer32

IpAddress
LAST-UPDATED
MANDATORY-GROUPS
MAX-ACCESS
MIN-ACCESS

MODULE
MODULE-COMPLIANCE
MODULE-IDENTITY
NOTIFICATION-GROUP

Z2 Z2 2 2 2 2 2 Z2 <K zZ2<XKXKzZz2<XXKzZz2<XKZKKzZz2<L<K<LK<LKZz<L<K<L<K<KXKzZzzZz<KzZ2zZz2zzZz2z<zZz 2z <
<X << <L ZL<LZL<LCL<L<<L<<L<<Z<<<<<<X

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

216 e« Network Management

Table 6.1 (continued)

KEYWORD SNMPV1 SNMPV2
NOTIFICATION-TYPE Y
NetworkAddress
OBJECT
OBJECT-GROUP
OBJECT-IDENTITY
OBJECT-TYPE
OBJECTS

OCTET

OF
ORGANIZATION
Opaque
PRODUCT-RELEASE
REFERENCE
REVISION
SEQUENCE

SIZE

STATUS

STRING
SUPPORTS
SYNTAX

TEXTUAL-
CONVENTION

TRAP-TYPE
TimeTicks
UNITS
Unsigned32
VARIABLES
VARIATION
WRITE-SYNTAX

Z<Z<<X<X=<XxZ<zZ2<KZ2<K<XxzZ2<zZ22Z<=<2Z
A A AL AL AL AL LKL LKL LKL LKL KKK <K 2Z

Z2 Z2 <X 2z < <
< <X zZ2<X<<X <2z

objects that are required to be implemented in the current version, but may not exist in future versions
of SNMP. This allows for backward compatibility during the transition between versions.

Although the REFERENCE clause was used only in an OBJECT-TYPE construct in SMIv1, it is used
1n many constructs in version 2.

Let us extend our hypothetical example of InfoTech Services and suppose that ISI makes a class of
router products. It is given an OBJECT IDENTIFIER as isiRouter OBJECT IDENTIFIER ::= {private.
enterprises.isi 1}. The class of router products can be specified at a high level using the OBJECT-IDEN-

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 217

\
MODULE-IDENTITY MACRO ::=

BEGIN
TYPE NOTATION ::=
“LAST-UPDATED” value (Update UTCTime)
“ORGANIZATION" Text
“CONTACT-INFO” Text
“DESCRIPTION" Text
RevisionPart
VALUE NOTATION ::=
value (VALUE OBJECT IDENTIFIER)
RevisionPart ::= Revisions | empty
Revisions ::= Revision | Revisions Revision
Revision ::=
“REVISION” value (UTCTime)
“DESCRIPTION” Text
-- uses the NVT ASCII character set
Text ::= " string ™"
END
- /

Figure 6.7 MODULE-IDENTITY Macro

/isiMIBModuIe MODULE-IDENTITY

LAST-UPDATED “9802101100Z”
ORGANIZATION “InfoTech Services, Inc.”
CONTACT-INFO “Mani Subramanian
Tele: 770-111-1111
Fax: 770-111-2222
email: manis@bellsouth.net”
DESCRIPTION “Version 1.1 of the InfoTech Services MIB module”
Revision “9709021500Z"
DESCRIPTION “Revision 1.0 on September 2, 1997 was a draft

_ version” J
Figure 6.8 Example of MODULE-IDENTITY Macro

TITY macro as shown in Figure 6.10(a). The status of the isiRouter is current and is described as an
8-slot IP router. A reference is given for obtaining the details.

A specific implementation of the router in isiRouter class of products is routerlsil23. This is a man-
aged object specified by the OBJECT-TYPE macro shown in Figure 6.10(b). We are already familiar
with the OBJECT-TYPE macro by now.

Let us make sure that we clearly understand the terminology used with the term OBJECT. OBJECT
IDENTIFIER defines the administrative identification of a node in the MIB. The OBJECT IDENTITY
macro is used to assign an object identifier value to the object node in the MIB. The OBJECT-TYPE is
a macro that defines the #ype of a managed object. It is also used to describe a new type of object. As we
have learned in the previous chapters, an object instance is a specific instance of the object (tvpe). Thus,
a specific instance of the routerlsil23 could be identified by its IP address 10.1.2.3.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

218 e Network Management

e N

OBJECT-IDENTITY MACRO ::=
BEGIN
TYPE NOTATION ::=

“STATUS” Status
“‘DESCRIPTION" Text
ReferPart

VALUE NOTATION ::=
value (VALUE OBJECT IDENTIFIER)

Status ::= “current” | “deprecated” | “obsolete”

ReferPart ::= “REFERENCE” Text | empty

Text ::= “*“string
END

RT3

Figure 6.9 OBJECT-IDENTITY Macro

isiRouter OBJECT-IDENTITY
STATUS current
DESCRIPTION “An 8-slot IP router in the IP router family.”
REFERENCE “ISI Memorandum No. ISI-R123 dated January 20,
1997"
::= {private.enterprises.isi 1}

_ (a) Example of an OBJECT-IDENTITY Macro

4 routerlsi123 OBJECT-TYPE N
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION “An 8-slot IP router that can switch up to
100 million packets per second.”
::= {isiRouter 1}

(b) Example of an OBJECT-TYPE Macro

. /
Figure 6.10 Example of OBJECT-IDENTITY and OBJECT-TYPE Macros

Comparing Figure 6.10(a) with Figure 6.10(b) we observe the difference between OBJECT-IDENTITY
and OBJECT-TYPE. The status clause appears in both. The description clause that also appears in both
describes different aspects of the object. The OBJECT-IDENTITY describes the high-level description;
whereas the OBJECT-TYPE description focuses on the details needed for implementation.

Let us now visualize the router in Figure 6.10 with several slots for interface cards. We want to define
the parameters associated with each interface. The parameters that are managed objects (or entities) are
defined by an aggregate object, [fTable. For example, the ifNumber for our router example could be 32
if the router has eight slots and each card has four ports.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 219

Table 1 Table 2
table1 table 2
(T1) (T2)
table1Entry table2Entry
(E1) (E2)

T1.E1.C1.1 T1.E1.C2.1 T1.E1.C3.1 <:::> T2.E2.C4.1 T2.E2.C5.1
T1.E1.C1.2 T1.E1.C2.2 T1.E1.C3.2 <}:|[> T2.E2.C4.2 T2.E2.C5.2
T1.E1.C1.3 T1.E1.C2.3 T1.E1.C3.3 <}::> T2.E2.C4.3 T2.E2.C5.3
T1.E1.C1.4 T1.E1.C2.4 T.E1.C3.4 <}:"> T2.E2.C44 T2.E2.C54
Index: Conceptual rows:
First columnar object in Table 1 1. T1.E1.C1.1
2.T1.E1.C1.2
3.T1.E1.C1.3
4. T1.E1.C1.4

Figure 6.11 Augmentation of Tables

SMIv2 extends the concept table for an aggregate object from a single table to multiple tables. This
allows for expansion of managed objects when the number of columnar objects needs to be increased,
or when the objects are best organized by grouping them hierarchically. Let us first consider the case of
adding columnar objects to an existing table with the following restrictions: (a) the number of concep-
tual rows is not affected by the addition; (b) there is one-to-one correspondence between the rows of the
two tables; and (c) the INDEX of the second table is the same as that of the first table. This is shown in
Figure 6.11.

Table 1 is called the aggregate object table! and has three columns and four rows; and Table 2 is called
the aggregate object table2 and has two columns and four rows. There is a one-to-one correspondence in
rows between the two tables. The row object for tablel is fablel Entry, and the row object for table 2 is
table2Entry. The INDEX is defined in Table 1 for both tables and it is the columnar object T1.E1.C1. We
are using the notations T1, E1, C1, etc., for easier visual conceptualization of the instance of an object in
a table using the prefixes of table ID (e.g., T1) and entry (e.g., E1). The columnar object notation starts
with C (e.g., C1). The value or values suffixed with the columnar object identifier uniquely identifies
the row. Thus, the list of objects identified by the index T1.E1.C1.2 is the ones in the second rows of

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

220 e« Network Management

table1Entry OBJECT-TYPE)
SYNTAX TableT1Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “An entry (conceptual row) in table T1"
INDEX {T1.E1.C1}
;= { table1 1}
table2Entry OBJECT-TYPE
SYNTAX TableT2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “An entry (conceptual row) in table T2"
AUGMENTS {table1Entry}
_ ;= {table2 1} Y,

Figure 6.12 ASN.1 Constructs for Augmentation of Tables

Tables 1 and 2. The value of the columnar object T2.E2.C4 in Table T2 corresponding to index T1.EI.
C1.21s T2.E2.C4.2. Table 1 is called the base table, and Table 2 is the augmented table. The indexing
scheme comprises two clauses, the INDEX clause and the AUGMENTS clause. The constructs for the
rows of the two tables in Figure 6.11 are shown in Figure 6.12. The object table! Entry has the INDEX
clause and table? Entry has the AUGMENTS clause that refers to tablel Entry. The combination of the
two tables still provides four conceptual rows, TI.E1.C1.1 through T1.E1.C1.4 (identified by the index),
the same number of rows as in the base table.

Figure 6.13 shows an example of augmentation of tables. We have augmented ipAddrTable in the
standard MIB with a proprietary table, IpAugAddrTable that could add additional information to the
rows of the table. IpAddrTable is the base table and ipAugAddrTable is the augmented table. In a practi-
cal case, the ipAugAddrTable could add two more columnar objects defining the board and port number
associated with the ipAdEntIfIndex.

A table with a larger number of rows (dense table) can be augmented to the base table with com-
bined indices of both, as shown in Figure 6.14. The INDEX clause for combining unequal-sized tables
is the combined indices; i.e., combined columnar objects as the INDEX clause for the added aggregate
object. In Figure 6.14, Table 1 consists of two rows and three columnar objects, T1.E1.C1, T1.E1.C2,
and T1.E1.C3, with the first columnar object TI.E1.C1 being the index. Table 2 has four rows and two
columnar objects, T2.E2.C4 and T2.E2.C5, with its first columnar object, T2.E2.C4, being the index.
The combined index for specifying the aggregate object of Table 2 appended to Table 1 is the set of both
first columnar objects, T1.E1.C1 and T2.E2.C4. Table 1 is called the base table and Table 2 is called the
dependent table. As we see in Figure 6.14, the combined base table and the dependent table could have
a maximum of 8 conceptual rows (multiplication of the rows of the two tables).

Figure 6.15 shows the constructs for augmenting a dense table to a base table. The two table objects,
tablel and table2, are nodes under the node table. The tablel Entry defines a row in tablel with the
columnar object T1.E1.C1 as the index. The table2Entry is a row in table2. Its index is defined by the
indices of both tables, namely T1.E1.C1 and T2.E2.C3.

We can visualize the application of augmentation of a dense table with an example of a router with
multiple slots, each slot containing a particular type of board, for example, LEC and Ethernet shown in

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 221

4 D
ipAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpAddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “The table ..."
= {ip 20}
ipAddrEntry OBJECT-TYPE
SYNTAX IpAddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “The addressing information”
INDEX {ipAdEntAddr}

;;= {ipAddrTable 1}
ipAugAddrTable OBJECT-TYPE

SYNTAX SEQUENCE OF IpAugAddrEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION “The augmented table to IP Address Table defining
board and port numbers”

= {ipAug 1}
ipAugAddrEntry OBJECT-TYPE

SYNTAX IpAugAddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “The addressing information...”
AUGMENTS {ipAddrEntry}
.= {ipAugAddrTable 1}

N J

Figure 6.13 Example of Augmentation of Tables

Figure 4.3(c). The slot and the board type will be defined in Table 1. Each board may have a different
number of physical ports. The port configuration is defined by Table 2. By using the combination of the
two tables, we can specify the details associated with a given port in a given slot.

The third possible scenario in appending an aggregate object to an existing aggregate object is the
case where the augmented table has fewer rows than that of the base table. This is called a sparse dep-
endent table case and is shown in Figure 6.16. In this example, the index for the second table is the
same as that for the base table and the constructs are similar to the ones shown in Figure 6.12 except
that the AUGMENTS clause is substituted with the INDEX clause for fable2Entry. This is shown in
Figure 6.17.

In SNMPv2, operational procedures were introduced for the creation and deletion of a row in a table.
However, prior to discussing these procedures, let us first look at the textual convention that was speci-
fied to create a new object type in designing MIB modules. We will return to row creation and deletion in
Section 6.3.7.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

222 e« Network Management

Table 1 Table 2
table1 table2
(T1) (T2)

table1Entry table2Entry
(E1) (E2)

T1.E1.C11 T1.E1.C2.1 T1.E1.C3.1 % T2.E2.C4.1 T2.E2.C5.1
T1.E1.C1.2 T1.E1.C2.2 T1.E1.C3.2 § T2.E2.C4.2 T2.E2.C5.2
\ T2.E2.C4.3 T2.E2.C5.3
T2.E2.C4.4 T2.E2.C5.4
Conceptual rows:
1. T1.E1.C1.1, T2.E2.C4.1
Index:

2. T1.E1.C1.1, T2.E2.C4.2
3. T1.E1.C1.1, T2.E2.C4.3
4. T1.E1.C1.1, T2.E2.C4.4
5.T1.E1.C1.2, T2.E2.C4 .1

First columnar objects in Tables 1 and 2

8. T1.E1.C1.4, T2E2.C4.4
Figure 6.14 Combined Indexing of Tables

6.3.6 Textual Conventions

Textual conventions are designed to help definition of new data types following the structure defined
in SMIv2. It is also intended to make the semantics consistent and clear to the human reader. Although
new data types could have been created using new ASN.1 class and tag, the decision was made to use the
existing defined class types and apply restrictions to them. This is accomplished by defining an ASN.1
macro, TEXTUAL-CONVENTION, in SMIv2.

The TEXTUAL-CONVENTION macro concisely conveys the syntax and semantics associated
with a textual convention. SNMP-based management objects defined using a textual convention are
encoded by the same Basic Encoding Rules that define their primitive types. However, they do have the
special semantics as defined in the macro. For all textual conventions defined in an information module,
the name shall be unique and mnemonic, similar to the data type and shall not exceed 64 characters.
However, it is usually limited to 32 characters.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 223

4 N\
table1 OBJECT-TYPE
SYNTAX SEQUENCE OF table1Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “Table 1 under T”
n={ table 1}
table1Entry OBJECT-TYPE
SYNTAX Table1Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “An entry (conceptual row) in Table 1"
INDEX {T1.E1.C1}
;.= {table1 1}
table2 OBJECT-TYPE
SYNTAX SEQUENCE OF table2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “Table 2 under T”
= {table 2}
table2Entry OBJECT-TYPE
SYNTAX TableZ2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “An entry (conceptual row) in Table 2"
INDEX {T1.E1.C1, T2.E2.C4}
= {table2 1}
. /

Figure 6.15 ASN.1 Constructs for Augmenting Dense Table

Let us now compare the definition of a type in SMIvl with SMIv2. The textual convention was
defined in SNMPvI1 as an ASN.1 type assignment. For example, the textual convention for data type
DisplayString in SNMPv1, from RFC 1213, is

DisplayString ::= OCTET STRING
-- This data type is used to model textual information taken from the NVT
-- ASCII character set. By convention, objects with this syntax are

-- declared as having
-- SIZE (0..255).

The same example of DisplayString in SNMPv2 is defined as:

DisplayString ::= TEXTUAL-CONVENTION
DISPLAY-HINT “255a”
STATUS current
DESCRIPTION “Representstextualinformationtakenfromthe NVTASCII character
set, as defined in pages 4, 10-11 of RFC 854. ...”
SYNTAX OCTET STRING (SIZE (0..255))

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

224 o Network Management

Table 1 Table 2
table1 table2
(T1) (T2)
tabel1Entry table2Entry

(E1) (E2)

T1.E1.C1.1 T1.E1.C2.1 T1.E1.C3.1 <::> T2.E2.C3.1 T2.E2.C4.1

T1.E1.C1.2 T1.E1.C2.2 T1.E1.C3.2

T1.E1.C1.3 T1.E1.C2.3 T1.E1.C3.3 <}:{> T2.E2.C3.2 T2.E2.C4.2

T1.E1.C1.4 T1.E1.C2.4 T1.E1.C3.4
Index: Conceptual rows:
First columnar object in Table 1 1. T1.E1.C11
2.T1.E1.C12
3.T1.E1.C1.3
4. T1.E1.C14

Figure 6.16 Addition of a Sparse Table to a Base Table

As we can see from the above example, the TEXTUAL-CONVENTION in SNMPv2 is defined as
data type, and is used to convey the syntax and semantics of a textual convention. The macro for textual
conventions is defined in RFC 1903, and a skeleton of it is presented in Figure 6.18. It has the definition
of type and value notations with the formalized definition of data types.

All clauses except DisplayPart in the TEXTUAL-CONVENTION macro are self-explanatory and rep-
resent similar clauses as in SMIv1. The DISPLAY-HINT clause, which is optional, gives a hint as to how the
value of an instance of an object, with the syntax defined using this textual convention, might be displayed. It
is applicable to the situations where the underlying primitive type is either INTEGER or OCTET STRING.

For INTEGER type, the display consists of two parts. The first part is a single character denoting the
display format: “a” for ASCII, “b” for binary, “d” for decimal, “0” for octal, and “x” for hexadecimal. It
is followed by a hyphen and an integer in the case of decimal display indicating the number of decimal
points. For example, a hundredths value of 1234 with DISPLAY-HINT “d-2" is displayed as 12.34.

For OCTET-STRING type, the display hint consists of one or more octet-format specifications. A
brief description of each part is shown in Table 6.2. For example, the DISPLAY-HINT “255a” indicates
that the DisplayString is an ASCII string of up to a maximum of 255 characters.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 o SNMP Management: SNMPv2 o 225

- ™
table1 OBJECT-TYPE
SYNTAX SEQUENCE OF table1Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “Table 1 under T"
= { table 1}
table1Entry OBJECT-TYPE
SYNTAX Table1Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “An entry (conceptual row) in Table 1”
INDEX {T1.E1.1}
= {table1 1}
table2 OBJECT-TYPE
SYNTAX SEQUENCE OF table2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “Table 2 under T"
= {table 2}
table2Entry OBJECT-TYPE
SYNTAX Table2Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION “An entry (conceptual row) in Table 2”
INDEX {table1Entry}
= {table2 1}
o J
Figure 6.17 ASN.1 Constructs for Augmenting Sparse Table
/TEXTUAL-CONVENTION MACRO ::=)
BEGIN
TYPE NOTATION ::=
DisplayPart
“STATUS” Status
“DESCRIPTION" Text
ReferPart
“SYNTAX" Syntax
VALUE NOTATION ::=
value (VALUE Syntax)
DisplayPart ::= “DISPLAY-HINT” Text | empty
Status ::= “current” | “deprecated” | “obsolete”
END
N /

Figure 6.18 TEXTUAL-CONVENTION Macro [RFC 1903]

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

226 e« Network Management

Table 6.2 DISPLAY-HINT for QOctet-Format

1 (Optional) repeat indicator An integer, indicated by *, which specifies how
e many times the remainder of this octet-format
should be repeated

2 Octet length One or more decimal digits specifying the
number of octets

3 Display format “b” for binary, “x” for hexadecimal, “d” for
decimal, “o” for octal, and “a” for ASCII for
display

4 (Optional) display separator A single character other than a decimal digit or

character “** produced after each application of the octet

specification.

5 (Optional) repeat terminator A single character other than a decimal digit
character or “*” present if display character is present.
Produced after the second and third part.

Table 6.3 shows the types for which textual conventions were specified in SMIv2. A brief descrip-
tion for each type is also given. They are applicable to all MIB modules. Only those textual conventions
whose status is current are given in the table. One of the important textual conventions is RowStatus,
which is used for the creation and deletion of conceptual rows, which we will discuss next.

Table 6.3 SMIv2 Textual Conventions for Initial Data Types

DisplayString Textual information from NVT ASCII character set [RFC 854]
PhysAddress Media- or physical-level address

MacAddress IEEE 802 MAC address

TruthValue Boolean value; INTEGER {true (1), false (2)}

TestAndIncr Integer-valued information used for atomic operations

AutonomousType An independently extensible type identification value
VariablePointer Pointer to a specific object instance; e.g., syscontact.0,

iflnOctets.3
RowPointer Pointer to a conceptual row
RowStatus Used to manage the creation and deletion of conceptual rows

and is used as the value of the SYNTAX clause for the status
column of a conceptual row

TimeStamp Value of sysUpTime at which a specific occurrence happened
Timelnterval Period of time, measured in units of 0.01 seconds
DateandTime Date—time specifications

StorageType Implementation information on the memory realization of a

conceptual row as to the volatility and permanency
Tdomain Kind of transport service

Taddress Transport service address

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 227

6.3.7 Creation and Deletion of Rows in Tables

The creation of a row and deletion of a row are significant new features in SMIv2. This is patterned
after a similar procedure that was developed for RMON, which we will cover in Chapter 8. There are
two methods to create a row in a table. The first is to create a row and make it active, which is available
immediately. The second method is to create the row and make it available at a later time. This means
that we need to know the status of the row as to its availability.

The information on the status of the row is accomplished by introducing a new column, called the
status column. In Table 6.3, we observe that for the textual convention, RowStatus is used as the value of
the SYNTAX clause for the status column of a conceptual row. Table 6.4 shows the status with enumer-
ated integer syntax for the six states associated with the row status. The last three states, along with the
first one (1, 4, 5, and 6), are those that the manager uses to create or delete rows on the agent. The first
three states (1, 2, and 3) are those that are used by the agent to send responses to the manager.

The MAX-ACCESS clause is extended to include “read-create” for the stafus object, which includes
read, write, and create privileges. It is a superset of read-write. If a status columnar object is present,
then no other columnar object of the same conceptual row may have a maximal access of “read-write.”
But 1t can have objects with maximum access of read-only and not-accessible. If an index object of a
conceptual row is also a columnar object (it does not always have to be), it is called auxiliary object
and its maximum access 1s made non-accessible. There could be more than one index object to define a
conceptual row in a table.

Let us now analyze the create and delete operations using the conceptual table shown in Figure 6.19.
The table, tablel, originally has two rows and three columns. The first column, szatus, has the value of
the status of the row as indicated by the enumerated integer syntax of RowStatus textual convention.
The second columnar object, index, is the index for the conceptual row of entryl; and the third colum-
nar object contains non-indexed data. We will illustrate the two types of row-creation and row-deletion
operations by adding a third row and then deleting it.

As we notice from Table 6.4, there are two states for RowStatus, createAndGo and createAndWait,
which are action operations. In the former, the manager sends a message to the agent to create a row
and make the status active immediately. In the latter operation, the manager sends a message to create a

Table 6.4 RowStatus Textual Convention

STATE ENUMERATION DESCRIPTION

active 1 Row exists and is operational
notinService 2 Operation on the row is suspended
notReady 3 Row does not have all the columnar

objects needed

createAndGo 4 This is a one-step process of
creation of a row, immediately goes
into the active state

createAndWait 5 Row is under creation and should
not be commissioned into service

destroy 6 Same as Invalid in EntryStatus. Row
should be deleted

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

228 ¢ Network Management

row, but not to make it active immediately. Figure 6.20 shows the Create-and-Go operation. The man-
ager process initiates a Set-Request-PDU to create a conceptual row with the values given for the three
columnar instances of the row. The value for the index column is specified by the VarBind index = 3.
This is suffixed to the other two columnar objects in the new row to be created. The value of stafus is
specified as 4, which is the createAndGo state as seen in Table 6.4. The set-request message also speci-
fies the default value DefData for data.3, and thus all the information needed to establish the row and

table1

entry1
status.1 index.1 data.1
status.2 index.2 data.2
status.3 index.3 data.3

Row to be created/deleted

Figure 6.19 Conceptual Table for the Creation and Deletion of a Row

Manager Agent Managed
Process Process Entity

SetRequest
\ (status.3 = 4,

index.3 = 3, T

data.3 = DefData)

— Create Instance

Response
(status.3 =1, _____’__,__"———‘
index.3 = 3,

data.3 = DefData)

| «— Instance Created

Figure 6.20 Create-and-Go Row Creation

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 o SNMP Management: SNMPv2 o 229

Manager Agent
Process Process
SetRequest
(status.3 = 5,_______'
index.3=3)
Response
N
. (status.3=3;
index.3=3)
GetRequest

(data3) —— s

Response -
< (data.3 = noSuchlInstance)

SetRequest
(data.3 = DefData) —————

Response /

(status.3=2
data.3 = DefData)

————————— _ SetRequest
(status.3=1)

Response ___ ————— |

<~ (status.3=1)

Figure 6.21 Create-and-Wait Row Creation

turn it into an active state 1s complete. The agent process interacts with the managed entity, creates the
instance successfully, and then transmits a response to the manager process. The value of the status is
1, which denotes that the row is in an active state. The response also contains the values of the other
columnar object instances.

Figure 6.21 presents a scenario for operational sequence in the creation of a row using the Create-and-
Wait method. Again, this illustration takes the same scenario of adding the third row to the table shown in
Figure 6.17. Only the manager and the agent are shown and not the managed entity in this figure. The
manager process sends a Set-Request-PDU to the agent process. The value for status is 5, which is to
create and wait. The third columnar object expects a default value, which is not in the set-request mes-
sage. Hence, the agent process responds with a status value of 3, which is notReady. The manager sends
a get-request to get the data for the row. The agent responds with noSuchlnstance message, indicating
that the data value is missing. The manager subsequently sends the value for data and receives a res-
ponse of notinService (2) from the agent. The fourth and final exchange of messages in the figure is to
activate the row with a stafus value of 1. With each message received from the manager, the agent either
validates or sets the instance value on the managed entity.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

230 ¢ Network Management
Table 6.5 Table of States for Row Creation and Deletion
ACTION A B C D
STATUS STATUS COLUMN STATUS STATUS
COLUMN DOES NOTREADY COLUMN COLUMN ACTIVE
NOT EXIST NOTINSERVICE
Set status column noError -> D inconsistent-Value inconsistent-Value inconsistent-Value

to createAndGo

Set status column
to createAndWait

Set status column
to active

Set status column
to notinService

Set status column
to destroy

Set any other
column to some

noError, see 1
or wrongValue

inconsistent-Value

inconsistent-Value

inconsistent-Value

inconsistent-Value inconsistent-Value noError ->D noError ->D
or see 2 ->D

inconsistent-Value inconsistent-Value noError ->C noError ->C
orsee3->C or

wrongValue

noError ->A noError ->A noError ->A noError ->A

see 4 noError noError ->C see 5->D
see 1

value

A summary of possible state transitions 1s given in Table 6.5. The first column lists the action; and the
transitions based on the present state are listed in the next four columns.

1.
2.

goto B or C, depending on information available to the agent.

If other variable bindings included in the same PDU provide values for all columns, which are
missing but are required, then return noError and goto D.

If other variable bindings included in the same PDU provide values for all columns, which are
missing but are required, then return noError and goto C.

Atthe discretion of the agent, the return value may be either: inconsistentName: because the agent
does not choose to create such an instance when the corresponding RowStatus instance does not
exist, or inconsistentValue: if the supplied value is inconsistent with the state of some other
MIB object’s value, or noError; because the agent chooses to create the instance.

If noError is returned, then the instance of the status column must also be created, and the
new state is B or C, depending on the information available to the agent. If inconsistentName
or inconsistent Value is returned, the row remains in state A.

Depending on the MIB definition for the column/table, either noError or inconsistentValue may be
returned.

NOTE: Other processing of the set request may result in a response other than noError being
returned, e.g., wrongValue, noCreation, etc.

The operation of deletion of a row is simple. A set-request with a value of 6, which denotes destroy,
for status, 1s sent by the manager process to the agent process. Independent of the current state of the
row, the row 1s deleted and the response sent back by the agent. The instance in the managed entity is
deleted in the process. This is shown in Figure 6.22.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full

extent of U.S. Federal and Massachusetts laws.

Chapter 6 « SNMP Management: SNMPv2

Manager
Process

\SetRequest

-~ (status.3=6)

Figure 6.22 Row Deletion

6.3.8 Notification Definitions

Agent
Process

Managed
Entity

(status.3=6)————_,|

Response |

Delete Instance —__

. Instance Deleted — |

o 231

The trap information in SMIv1 has been redefined using the NOTIFICATION-TYPE macro in SMIv2.
As we will see in Section 6.5, the PDU associated with the trap information is made consistent with
other PDUs. The NOTIFICATION-TYPE macro contains unsolicited information that is generated on
an exception basis, for example, when set thresholds are crossed. It can be transmitted within either a
SNMP-Trap-PDU from an agent or an InformRequest-PDU from a manager. Two examples of a NOT-
IFICATION-TYPE macro, drawn from RFC 1902 and RFC 1907 are shown in Figure 6.23. The first
example, linkUp, is generated by an agent when a link that has been down comes up.

The OBJECTS clause defines the ordered sequence of MIB objects, which are included in the notifi-
cation. It may or may not be present. The second example, coldStart, in Figure 6.23, has the OBJECTS

clause missing and is not needed.

linkUp NOTIFICATION-TYPE
OBJECTS {iflndex}
STATUS current
DESCRIPTION

its configuration has come up.”
;= {snmpTraps 4}

coldStart NOTIFICATION-TYPE
STATUS current
DESCRIPTION

unaltered.”
2= {snmpTraps 1}

“A coldStart trap signifies that the SNMPv2 entity, acting in
an agent role, is reinitializing itself such that its configuration is

“A linkUp trap signifies that the SNMPv2 entity, acting in an agent
role, recognizes that one of the communication links represented in

\

Figure 6.23 Examples of NOTIFICATION-TYPE Macro

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

232 + Network Management

The other two clauses, STATUS and DESCRIPTION, have the usual mappings.

We have not presented here discussions on refined syntax in some of the macros, as well as extension
to informational modules. You are referred to RFC 1902 for a treatment of these, which also discusses
the conversion of a managed object from the OSI to the SNMP version.

6.3.9 Conformance Statements

RFC 1904 defines SNMPv2 conformance statements for the implementation of network management
standards. A product, generally, is considered to be in compliance with a particular standard when it
meets the minimum set of features in its implementation. Minimum requirements for SNMPv2 compli-
ance are called module compliance and are defined by an ASN.1 macro, MODULE-COMPLIANCE.
It specifies the minimum MIB modules or a subset of modules that should be implemented. The actual
MIB modules that are implemented in an agent are specified by another ASN.1 module, AGENT-CAPA-
BILITIES. For the convenience of defining module compliance and agent capabilities, objects and traps
have been combined into groups, which are subsets of MIB modules. Object grouping is defined by an
ASN.1 macro, OBJECT-GROUP, and the group of traps is defined by the NOTIFICATION-GROUP
macro.

Object Group. The OBJECT-GROUP macro defines a group of related objects in a MIB module and
is used to define conformance specifications. It is compiled during implementation, not at run-time. The
macro is shown in Figure 6.24. The implementation of an object in an agent implies that it executes the
get and set operations from a manager. If an agent in SNMPv2 has not implemented an object, it returns
a noSuchObject error message.

- N

OBJECT-GROUP MACRO
BEGIN
TYPE NOTATION ::=
ObjectsPart
“STATUS” Status
“‘DESCRIPTION” Text
ReferPart

VALUE NOTATION ::=
value (VALUE OBJECT IDENTIFIER)

ObjectsPart ::= "OBJECTS” “{"objects™}”
Objects ::= Object | Objects “,” Object
Object ::= value (Name Object Name)
Status ::= “‘current” | “deprecated” | “obsolete”
ReferPart ::= ‘REFERENCE” Text | empty
-- uses the NVT ASCII character set
Text ::= " string
END
N /

Figure 6.24 OBJECT-GROUP Macro

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 233

\
systemGroup OBJECT-GROUP

OBJECTS {sysDescr, sysObjectID, sysUpTime, sysContact, sysName,
sysLocation, sysServices, sysORLastChange, sysORID,
sysORUptime, sysORDesc}

STATUS current

DESCRIPTION “The system group defines objects that are common

to all managed systems.”

;2= {snmpMIBGroups 6}

N /
Figure 6.25 Example of an OBJECT-GROUP Macro

The OBJECTS clause names each object contained in the conformance group. Each of the named
objects is defined in the same informational module as the OBJECT-GROUP macro and has a MAX-
ACCESS clause of “accessible-for-notify,” “read-only,” “read-write,” or “read-create.” Every object
that is defined in an informational module with a MAX-ACCESS clause other than “not-accessible” is
pres-ent in at least one object group. This prevents the mistake of adding an object to an information
module, but forgetting to add it to a group.

The STATUS, DESCRIPTION, and REFERENCE clauses have the usual interpretations.

An example of an OBJECT-GROUP, systemGroup in SNMPv2, is shown in Figure 6.25. The system
group defines the objects, which pertain to overall information about the system. Since it is so basic, it
is implemented in all agent and management systems. All seven entities defined as values for OBJECTS
should be implemented. There are some new entities, such as sysORLastChange, in the group that were
not in SNMPv1. These will be addressed when we discuss SMPv2 MIB in the next section.

Notification Group. The notification group contains notification entities, or what was defined as traps
in SMIv1. The NOTIFICATION-GROUP macro is shown in Figure 6.26. The macro is compiled dur-
ing implementation, not during run-time. The value of an invocation of the NOTIFICATION-GROUP
macro is the name of the group, which is an OBJECT IDENTIFIER.

An example of NOTIFICATION-GROUP, smmpBasicNotificationsGroup, is shown in Figure 6.27.
According to this invocation, the conformance group, snmpBasicNotifications Group, has two notifications:
coldStart and authenticationFailure.

Module Compliance. The MODULE-COMPLIANCE macro, shown in Figure 6.28, defines
the minimum set of requirements for implementation of one or more MIB modules. The expansion of
the MODULE-COMPLIANCE macro is done during the implementation and not during run-time. The
MODULE-COMPLIANCE macro can be defined as a component of the information module or as a
companion module.

The STATUS, DESCRIPTION, and REFERENCE clauses are self-explanatory.

The MODULE clause is used to name each module for which compliance requirements are specified.
Modules are identified by the module name and its OBJECT IDENTIFIER. The latter can be dropped if
the MODULE-COMPLIANCE is invoked within an MIB module and refers to the encompassing MIB
module.

There are two CLAUSES of groups that are specified by the MODULE-COMPLIANCE macro.
They are MANDATORY-GROUPS and GROUP. As the name implies, the MANDATORY-CLAUSE

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

234 e Network Management

4 N

NOTIFICATION-GROUP MACRO
BEGIN
TYPE NOTATION ::=
NotificationsPart
“STATUS” Status
“DESCRIPTION” Text
ReferPart

VALUE NOTATION ::=
value (VALUE OBJECT IDENTIFIER)

NotificationsPart ::= “NOTIFICATIONS” “{"Notifications”}’
Notifications ::= Notification | Notifications “,” Notification
Notification ::= value (Name NotificationName)
Status = “current” | “deprecated” | “obsolete”
ReferPart ::= “REFERENCE” Text | empty

-- uses the NVT ASCII character set

Text ::= “*" string “*”
END
o /
Figure 6.26 NOTIFICATION-GROUP Macro
/snmpBasicNotificationsGr oup NOTIFICATION-GROUP N
NOTIFICATIONS {coldStart, authenticationFailure}
STATUS current
DESCRIPTION “The two notifications which an SNMP-2 entity is
required to implement.”
= {snmpMIBGroups 7}
N /

Figure 6.27 Example of a NOTIFICATION-GROUP Macro

modules have to be implemented for the system to be SNMPv2 compliant. The group specified by the
GROUP clause is not mandatory for the MIB module, but helps vendors define specifications of the
features that have been implemented.

When both WRITE-SYNTAX and SYNTAX clauses are present, restrictions are placed on the syntax
for the object mentioned in the OBJECT clause. These restrictions are tabulated in Section 9 of RFC
1902.

The snmpBasicCompliance macro is an example of a MODULE-COMPLIANCE macro and is part
of the SNMPv2 MIB presented in Figure 6.6. A system is defined as SNMPv2 compliant if and only
if snmpGroup, snmpSetGroup, systemGroup, and snmpBasicNotificationsGroup are implemented. The
GROUP, snmpCommunityGroup, is optional.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 235

MODULE-COMPLIANCE MACRO R
BEGIN
TYPE NOTATION ::=
“STATUS" Status
“DESCRIPTION” text
ReferPart
ModulePart
VALUE NOTATION ::=
value (VALUE OBJECT IDENTIFIER)
Status ::= “current” | “deprecated” | “obsolete”
ReferPart ::= “REFERENCE”" Text | empty
ModulePart ::= Modules | empty
Modules ::= Module | Modules Module
Module ::= -- name of module --
“MODULE” ModuleName
Mandatory Part
CompliancePart
ModuleName ::= moduleReference Moduleldentifier | empty
-- must not be empty unless contained in MIB module
Moduleldentifier ::= value (ModulelD OBJECT IDENTIFIER) | empty
MandatoryPart ::= “MANDATORY-GROUPS” “{* Groups"}”
| empty
Groups ::= Group | Groups “,” Group
Group ::= value (Group OBJECT IDENTIFIER)
CompliancePart ::= Compliances | empty
Compliances ::= Compliance | Compliances compliance
Compliance ::= ComplianceGroup | Object
ComplianceGroup ::= “GROUP” value (Name OBJECT IDENTIFIER)
“DESCRIPTION” Text
Object ::= "OBJECT" value (Name ObjectName)
SyntaxPart
WriteSyntaxPart
AccessPart
“DESCRIPTION" Text
--must be a refinement for object's SYNTAX clause
SyntaxPart ::= “SYNTAX” type (SYNTAX) | empty
--must be a refinement for object’'s SYNTAX clause
WriteSyntaxPart ::= "“WRITE-SYNTAX” type (WriteSYNTAX) | empty
AccessPart ::= “MIN-ACCESS” Access | empty
Access ::= “not-accessible” | “accessible-for-notify” |
“read-only” | “read-write” | “read-create”
-- uses the NVT ASCII character set
Text ::= """ string “"*”
END
- /

Figure 6.28 MODULE-COMPLIANCE Macro

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

236 ¢ Network Management

4 N
AGENT-CAPABILITIES

BEGIN
TYPE NOTATION ::

“PRODUCT-RELEASE” Text
“STATUS” Status
“DESCRIPTION” Test
ReferPart

ModulePart

VALUE NOTATION ::=
Value (VALUE OBJECT IDENTIFIER)

Status ::= “current” | “obsolete”
ReferPart ::= “‘REFERENCE" | empty
ModulePart ::= Modules | empty
Modules ::= Module | Modules Module
Module ::= -- name of module --

“SUPPORT” ModuleName
“INCLUDES” “{"Groups”}”’
VariationsPart

END
- /

Figure 6.29 AGENT-CAPABILITIES Macro (Skeleton)

Agent Capabilities. The AGENT-CAPABILITIES macro is lengthy and the reader is referred to RFC
1904 for exact specifications. A skeleton of the macro and significant points of the macro are covered
here and are shown in Figure 6.29.

The AGENT-CAPABILITIES macro for the router example given in Figure 6.10 is shown in
Figure 6.30. Note that sumpMIB model, which is SNMPv2-MIB, includes system and snmp MIBs.
Those MIBs and the associated groups are supported by the router. Other standard MIBs and groups
supported by the router are indicated in Figure 6.30.

6.4 SNMv2 MANAGEMENT INFORMATION BASE

As mentioned in Section 6.2 and shown in Figure 6.5 two new MIB modules, security and SNMPv2,
have been added to the Internet MIB. The SNMPv2 module has three submodules: snmpDomains,
snmpProxys, and snmpModules. snmpDomains extends the SNMP standards to send management mes-
sages over transmission protocols other than UDP, which is the predominant and preferred way of trans-
portation [RFC 1906]. Since UDP is the preferred protocol, systems that use another protocol need a
proxy service to map on to UDP. Not much work has been done on snmpProxys, as of now.

There are changes made to the core MIB-II defined in SNMPv 1. Figure 6.31 presents an overview of
the changes to the Internet MIB and their relationship. The system module and the snmp module under

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 237

routerlsi123 AGENT-CAPABILITIES R
PRODUCT-RELEASE “InfoTech Router isiRouter123 release 1.0”
STATUS current
DESCRIPTION “InfoTech High Speed Router”
SUPPORTS snmpMIB
INCLUDES {systemGroup, snmpGroup, snmpSetGroup,
snmpBasicNotificationsGroup}
VARIATION coldStart
DESCRIPTION “A coldStart trap is generated on all
reboots.”
SUPPORTS IF-MIB
INCLUDES {ifGeneralGroup, ifPacketGroup}
SUPPORTS IP MIB
INCLUDES {ipGroup, icmpGroup}
SUPPORTS TCP-MIB
INCLUDES {tcpGroup}
SUPPORTS UDP-MIB
INCLUDES {udpGroup}
SUPPORTS EGP-MIB
INCLUDES {egpGroup}
:={ isiRouter 1 }
o /
Figure 6.30 Example of an AGENT-CAPABILITIES Macro
internet
{1361}
directory mgmt experimental private security snmpv2
(1) (2 (3) (4) (5) (6)
snmpDomains snmpProxys snmpModules
(1) (2) (3)
mib-2 snmpMIB
(1) (1)
system snmp snmpMIBObjects snmpMIBConformance
(1) (11) (1) (2)

Figure 6.31 SNMPv2 Internet Group

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

238 e Network Management

mib-2 have significant changes as defined in RFC 1907. A new module snmpMIB has been defined,
which is {snmpModules 1}. There are two modules under snmpMIB: snmpMIBObjects and snmpMIB-
Conformance.

The MIB module snmpMIBObjects addresses the new objects introduced in SNMPv2, as well as
those that are obsolete. This is primarily concerned with trap, which has been brought into the same for-
mat as other PDUs. Also, many of the unneeded objects in the SNMP group have been made obsolete.

We discussed conformance specifications and object groups in the previous section. These are speci-
fied under the snmpMIBconformance module. As SNMPv2 is currently defined, there is a strong cou-
pling between system, sump, snmpMIBObjects, and snmpMIBconformance modules. With this picture
in mind, it will be a lot easier to follow RFC 1907, which discusses all these modules.

6.4.1 Changes to the System Group in SNMPv2

There are seven entities or objects in SNMPv2, which are common to a system. Additional information
is added to the System group in SNMPv2, which contains a collection of objects that support various
MIB modules. These are called object resources and are configurable both statically and dynamically.
Figure 6.32 shows the MIB tree for the System group in SNMPv2. The sysORLastChange entity and
sysORTable have been added to the set of objects in the System group. Table 6.6 presents the entity, OID,
and a brief description of each entity for the System group.

system
(mib-2 1)
sysDescr (1) sysORLastChange (8)
sysObjectld (2) sysServices (7)
sysUpTime (3) sysLocation (6)
sysContact (4) sysName (5)
sysORTable (9)

sysOREnNtry (1)

sysORIndex (1) sysORUpTime (4)

sysORID (2) sysORDescr (3)

Figure 6.32 SNMPv2 System Group

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 o SNMP Management: SNMPv2 o 239

Table 6.6 SNMPv2 System Group

ENTITY oID DESCRIPTION (BRIEF)

sysDescr system 1 Textual description

sysObjectID system 2 OBJECT IDENTIFIER of the entity

sysUpTime system 3 Time (in hundredths of a second since last reset)

sysContact system 4 Contact person for the node

sysName system 5 Administrative name of the system

sysLocation system 6 Physical location of the node

sysServices system 7 Value designating the layer services provided by the entity

sysORLastChange system 8 SysUpTime since last change in state or sysORID change

sysORTable system 9 Table listing system resources that the agent controls; manager can
configure these resources through the agent.

sysOREntry sysORTable 1 An entry in the sysORTable

sysORIndex sysOREnNtry 1 Row index, also index for the table

sysORID sysOREntry 2 D of the resource module

sysORDescr sysOREntry 3 Textual description of the resource module

sysORUpTime sysOREntry 4 System up-time since the object in this row was last instantiated

6.4.2 Changes to the SNMP Group in SNMPv2

The SNMP group in SNMPv2 has been considerably simplified from SNMPv1 by eliminating a
large number of entities that were considered unnecessary. The simplified SNMP group is shown in
Figure 6.33 (compare with Figure 5.21!). It has only eight entities, six old ones (1,3,4,5,6,30) and

snmp
(mib-2 11)
snmplnPkts(1) | | snmpProxyDrops (32)
snmplnBadVersions (3) | | snmpSilentDrops (31)
snmplnBadCommunityNames (4) | ‘ snmpEnableAuthenTraps (30)
snmplnBadCommunityUses (5) snmpInASNParseErrors (6)

SNMP Group Objects

1,3,6,30,31,32 snmpGroup

4.5 snmpCommunity Group

7,23 not used

2,8-23, 24-29 snmpObsoleteGroup

Figure 6.33 SNMPv2 SNMP Group

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

240 e« Network Management

two new ones (31,32). Figure 6.33 also presents the four groups of all SNMP entities: snmpGroup,
snmpCommunityGroup, snmpQObsoleteGroup, and the group of two objects, 7 and 23, not used even in
version 1. We will soon see that the snmpGroup is mandatory to implement for compliance of SNMPv2
and the snmpCommunityGroup is optional. The sumpObsoleteGroup is self-explanatory.

The SNMPv2 SNMP group table is shown in Table 6.7. All the unused and obsolete entities have
been omitted for clarity.

6.4.3 Information for Notification in SNMPv2

Information on traps in SNMPv1 has been restructured in version 2 to conform to the rest of the PDUSs.
The macro TRAP-TYPE, used in version 1 and described in RFC 1215, has been made obsolete in
SNMPv2. At the same time, enhancement to specifications has been made, and the terminology has
been generalized to “notification,” as the subheading indicates.

The information on notifications is defined under snmpMIBObjects and is shown in
Figure 6.34. There are three modules under the snmpMIBObjects node: snmp Trap (4), snmpTraps (5), and
snmpSet (6). The subnode designations 1, 2, and 3 under snmpMIBObjects have been made obsolete. A
brief description of the subnodes and leaf objects under snmpMIBObjects is given in Table 6.8.

The snmpTrap group contains information on the OBJECT IDENTIFIERs of the trap and the
enterprise responsible to send the trap. A new value, accessible-for-notify, has been added to the MAX-
ACCESS clause to define objects under sumpTrap.

The entities under snmp Traps are the well-known traps that are currently in extensive use in SNMPv1.
The snmpSetSerialNo is a single entity under snmpSer and is used by coordinating manager objects to

Table 6.7 SNMPv2 SNMP Group

ENTITY oD DESCRIPTION (BRIEF)

snmpInPkts snmp (1) Total number of messages delivered from
transport service

snmplnBadVersions snmp (3) Total number of messages from transport
service that are of unsupported version

snmplnBadCommunityNames snmp (4) Total number of messages from transport
service that are of unknown community
name

snmpIinBadCommunityUses snmp (5) Total number of messages from transport
service, of not allowed operation by the
sending community

snmpInASNParseErrs snmp (6) Total number of ASN.1 and BER errors

snmpEnableAuthenTraps snmp (30) Override option to generate authentication
failure traps

snmpSilentDrops snmp (31) Total number of the five types of received
PDUs that were silently dropped due to
exceptions in var-binds or max. message
size

snmpProxyDrops snmp (32) Total number of the five types of received
PDUs that were silently dropped due to
inability to respond to a target proxy

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 241

snmpMIBObjects
(snmpMIB 1)
snmpTrap snmpTraps snmpSet
(4) (5) (6)
snmpTrapOID snmpTrapEnterprise snmpSetSerialNo
(1) 3) (1)
coldStart (1) | | authenticationFailure (5)
| | warmStart (2) linkUp (4)
linkDown (3)

Figure 6.34 MIB Modules under snmpMIBODbjects

Table 6.8 snmpMIBObjects MIB

ENTITY oID DESCRIPTION (BRIEF)

snmpTrap snmpMIBObjects 4 Information group containing trap ID and enterprise ID

snmpTrapOID snmpTrap 1 OBJECT IDENTIFIER of the notification

snmpTrapEnterprise ~ snmpTrap 2 OBJECT IDENTIFIER of the enterprise sending the
notification

snmpTraps snmpMIBObjects 5 Collection of well-known traps used in SNMPv1

coldStart snmpTraps 1 Trap informing of a cold start of the object

warmStart snmpTraps 2 Trap informing of a warm start of the object

linkDown snmpTraps 3 Agent detecting a failure of a communication link

linkUp snmpTraps 4 Agent detecting coming up of a communication link

authentificationFailure snmpTraps 5 Agent reporting receipt of an unauthenticated protocol
message

snmpSet snmpMIBObjects 6 Manager-to-Manager notification messages

snmpSetSerialNo snmpSet 1 Advisory lock between managers to coordinate set
operation

perform the set operation. This is intended as coarse coordination only; fine-grain coordination may
require more MIB objects in appropriate groups.

6.4.4 Conformance Information in SNMPv2

Conformance information is defined by the snmp MIBConformance module, as shown in Figure 6.35. It
consists of two submodules, snmpMIBcompliances and snmpMIBGroups. The sumpMIBCompliances
module has been extensively covered in Section 6.3.9. Units of conformance are defined in terms of OBJ-
ECT-GROUPS, mentioned in Section 6.3.9. Table 6.9 presents the various OBJECT-GROUPs defined in
SNMPv2 and associated OBJECTS for all but sempObsoleteGroup, which is shown in Figure 6.33.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

242 ¢ Network Management

snmpMIBConformance

(snmpMIB 2)

snmpMIBCompliances snmpMIBGroups

(1))
snmpBasicCompliance

(2)

snmpSetGroup (5) | | snmpObsoleteGroup (10)
systemGroup (6) | | snmpCommunityGroup (9)
snmplnBasicNotificationGroup snmpGroup

4) (8)

Figure 6.35 MIB Modules under snmpMIBConformance

6.4.5 Expanded Internet MIB-II

As SNMP network management expands covering legacy as well as new technology, MIB modules are
continuously increasing. Figure 6.36 shows an expanded MIB-II when SNMPv2 was released and has
more modules than those covered in RFC 1213. It is not intended to be an exhaustive list but includes
RMON MIB module that we will be addressing in this textbook. Table 6.10 gives a description of each
group in the MIB.

6.5 SNMPv2 PROTOCOL

SNMPv2 protocol operations are based on a community administrative model, which is the same as in
SNMPv1. This was discussed in Section 5.2.2. We presented SNMPv2 protocol operations from a sys-
tem architecture view in Section 6.2. In this section we will discuss details of PDU data structures and
protocol operations.

6.5.1 Data Structure of SNMPv2 PDUs

The PDU data structure in SNMPv2 has been standardized to a common format for all messages. This
improves the efficiency and performance of message exchange between systems. The significant im-
provement is bringing the trap data structure in the same format as the rest. The generic PDU message
structure is shown in Figure 6.37 and is the same as Figure 5.8 of SNMPv1. The PDU type is indicated
by an INTEGER. The error-status and error-index fields are either set to zero or ignored in the get-
request, get-next-request, and set messages. The error-status is set to zero in the get-response message
if there is no error; otherwise the type of error is indicated. The PDU and error-status are listed in
Table 6.11. The error-index is set to zero if there is no error. If there is an error, it identifies the first
variable binding in the variable-binding list that caused the error message. The first variable binding in
a request’s variable-binding list is index one, the second is index two, etc.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 o SNMP Management: SNMPv2 e« 243

Table 6.9 SNMPv2 OBJECT-GROUPs

OBJECT-GROUPS oD OBJECTS
snmpSetGroup snmpMIBGroups 5 snmpSetSerialNo

systemGroup snmpMIBGroups 6 sysDescr
sysObjectID
sysUpTime
sysContact
sysName
sysLocation
sysServices
sysORLastChange
sysORID
sysORUpTime
sysORDescr
snmpBasicNotification Group snmpMIBGroups 7 coldStart
authenticationFailure
snmpGroup snmpMIBGroups 8 snmplnPkts
snmplnBadVersions
snmplnASNParseErrs
snmpSilentDrops
snmpProxyDrops
snmpEnableAuthenTraps
snmpCommunityGroup snmpMIBGroups 9 snmplnBadCommunityNames
snmplnBadCommunityUses
snmpObsoleteGroup snmpMIBGroups 10 Please see Figure 6.33

There is a difference in usage of the error-status and error-index fields between SNMPv1 and
SNMPv2. In version 1, any error encountered by the agent in responding to requests from the manager
generates a non-zero value in either the error-status field or in both the error-status and error-index
fields. Values in variable bindings are returned only under non-error conditions.

However, in SNMPv2, if only the error-status field of the Response-PDU is non-zero, the value fields
of the variable binding in the variable-binding list are ignored. If both the error-status field and the err-
or-index field of the Response-PDU are non-zero, then the value of the error-index field is the index
of the variable binding (in the variable-binding list of the corresponding request) for which the request
failed. Values in other variable bindings in the variable-binding list are returned with valid values and
processed by the manager.

The generic PDU format is applicable to all SNMPv2 messages except the Get-Bulk-Request PDU,
for which the format is shown in Figure 6.38. It can be seen that the format of the structure is the same
in both cases, except that in the get-bulk-request message, the third and fourth fields are different.
The third field, the error-status field, is replaced by non-repeaters; and the fourth field, the error-index

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

244 « Network Management

internet
{1361}
mgmt
(2)
mib-2
(1)
system(1)| | character(19)
inerfaces(2) | | decnet(18)
addr trans(3) | | bridge(17)
ip(4)| | rmon(16)
icmp(5)| | bgp(15)
tcp(6) | | ospf(14)
udp(7) | | appletalk(13)
egp(8)| | genericlF(12)
oim(9) snmp(11)

transmission(10)

Figure 6.36 Expanded Internet MIB-Il Group

Table 6.10 Expanded MIB-II Group

GROUP OID DESCRIPTION (BRIEF)

ifMIB mib-2 31 Extension to interfaces group for new technologies

appletalk mib-2 13 MIB for appletalk networks

ospf mib-2 14 Open Shortest Path First routing protocol MIB

bgp mib-2 15 MIB for Border Gateway Protocol for inter-
autonomous network routing

rmon mib-2 16 MIB for remote monitoring using RMON probe; there
are MIBs under this for Ethernet and Token Ring
networks

bridge mib-2 17 MIB for bridges
decnet mib-2 18 Digital Equipment Corporation DECnet MIB

character mib-219 MIB for ports with character stream output for
computer peripheral

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 245

PDU
Type

Error Error VarBind 1| VarBind 1 VarBind n | VarBind n
Status Index name value name value

Figure 6.37 SNMPv2 PDU (all but bulk)

RequestlD

Table 6.11 Values for Types of PDU and Error-
status Fields in SNMPv2 PDU

FIELD TYPE VALUE

PDU Get-Request-PDU
GetNextRequest-PDU
Response-PDU
Set-Request-PDU
obsolete
GetBulkRequest-PDU
InformRequest-PDU
SNMPv2-Trap-PDU
noError

Error Status
tooBig
noSuchName
badValue
readOnly
genErr
noAccess
wrongType

0 N O O B WN =2 0O NP WN -2 O

wronglLength

9 wrongEncoding
10 wrongValue

" noCreation

12 inconsistentValue
13 resourceUnavailable
14 commitFailed

15 undoFailed

16 authorizationError
17 notWritable

18 inconsistentName

field, is replaced by max-repetitions. As we mentioned in Section 6.2, the get-bulk-request enables us
to retrieve data in bulk. We can retrieve a number of both non-repetitive scalar values and repetitive
tabular values with a single message. Non-repeaters indicate the number of non-repetitive field values

PDU
Type

Non- Max VarBind 1 | VarBind 1 VarBind n | VarBind n
Repeaters| Repetitions name value name value

Figure 6.38 SNMPv2 GetBulkRequest PDU

RequestID

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

246 e Network Management

requested; and the max-repetitions field designates the maximum number of table rows requested. We
will next look at the SNMPvV2 operations using PDUs.

6.5.2 SNMPv2 Protocol Operations

There are seven protocol operations in SNMPv2, as discussed in Section 6.2. We will ignore the report
operation, which is not used. The messages, get-request, get-next-request, set-request, and get-response,
are in both SNMPv1 and SNMPv2 versions and operate in a similar fashion. The two additional mes-
sages that are in SNMPv2, which are not in version 1, are the GetBulkRequest and InformRequest. The
command, get-bulk-request, is an enhancement of get-next request and retrieves data in bulk efficiently.
This is covered in the next subsection. The InformRequest is covered in a subsequent section along with
SNMPv2-Trap, which has been modified in version 2.

GetBulkRequest PDU Operation. The get-bulk-request operation is added in SNMPv2 to retrieve
bulk data from a remote entity. Its greatest benefit is in retrieving multiple rows of data from a table.
The basic operation of get-bulk-request is the same as get-next-request. The third and fourth field
positions are used in get-bulk-request message PDU as non-repeaters and max-repetitions, as shown in
Figure 6.38. The non-repeaters field indicates the number of non-repetitive (scalar) objects to be retrieved.
The max-repetitions field defines the maximum number of instances to be returned in the response
message. This would correspond to the number of rows in an aggregate object. The value for the max-
repetitions field is operation-dependent and is determined by such factors as the maximum size of the
SNMP message, or the buffer size in implementation, or the expected size of the aggregate object table.

The data structure of the response for the get-bulk-request operation differs from other get and set ope-
rations. Successful processing of the get-bulk-request produces variable bindings (larger array of Var-
BindList) in the response PDU, which is larger than that contained in the corresponding request. Thus,
there is no one-to-one relationship between the VarBindList of the request and response messages.

Figure 6.39 shows a conceptual MIB to illustrate the operation of get-next-request and get-bulk-
request shown in Figure 6.40 and Figure 6.41. It 1s similar to Figure 5.12 with two additional rows
added to the table. To notice the difference in improvement of get-bulk-request over get-next-request,
let us look at Figure 6.40, which shows the sequence of operations for get-next-request for the MIB
shown in Figure 6.39. The sequence starts with a get-request message from the manager process with a
VarBindList array of two scalar variables A and B. It is subsequently followed by the get-next-request
message with three columnar OBJECT IDENTIFIERS T.E.1, T.E.2, and T.E.3. The get-response returns
the first instance values T.E.1.1, T.E.2.1, and T.E.3.1. The sequence of operation continues until the
fourth instance is retrieved. The last get-next-request message with the OBJECT IDENTIFIERS T.E.1.4,
T.E.2.4, and T.E.3.4 generates the values T.E.2.1, T.E.3.1, and Z. This is because there are no more
instances of the table. It retrieves the three objects, which are logically the next lexicographically higher
objects—namely T.E.2.1 (next to T.E.1.4), T.E.3.1 (next to T.E.2.4), and Z (next to T.E.3.4). The manager
would stop the sequence at this message. However, if it continues the operation, it would receive a
noSuchName error message.

Figure 6.41 shows the sequence of operations to retrieve the MIB shown in Figure 6.39 using the get-
bulk message. The entire MIB data are retrieved in two requests. The first message GetBulkRequest (2,
3,A,B, T.E.1, TE.2, TE.3) is a request for receiving two non-repetitive objects (the first variable (2)
in the request command) and three repetitive instances (the second operand (3) in the command) of the
columnar objects (T.E.1, T.E.2, and T.E.3). The response returns values of A and B for the non-repetitive

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 ¢ SNMP Management: SNMPv2 o 247

_|

3

—
-

m
@/U

©
o
@

Figure 6.39 MIB for Operation Sequences in Figures 6.40 and 6.41

3

objects, and the first three rows of the aggregate object table. The second request is for three more rows
of the table. Since there is only one more row left to send, the response message contains the informa-
tion in the last row, the next lexicographic entity, Z, and the error message endOfMibView. The manager
interprets this as end of the table.

Figure 6.42 shows the retrieval of the Address Translation table shown in Figure 5.16 using the get-
bulk-request operation. Instead of four sets of get-next-request and get-response messages, only two
get-bulk-request and response messages are needed in the get-bulk-request operation.

SNMPv2-Trap and InformRequest PDU Operations. The SNMPv2-Trap PDU performs the
same function as in version 1. As we notice, the name has been changed, as well as its data structure
to the generic format shown in Figure 6.37. The variable bindings in positions 1 and 2 are specified as
sysUpTime and snmpTrapOID, as shown in Figure 6.43. The destination(s) to which a trap is sent is
implementation-dependent.

A trap is defined by using a NOTIFICATION-TYPE macro. If the macro contains an OBJECTS
clause, then the objects defined by the clause are in the variable bindings in the order defined in the

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17

USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

248 e Network Management

A
B
T
Manager GetRequest (AB) |
Process — GetResponse (A,B) Agent
Process E
GetNextRequest (T.E.1.TE.2,T.E3)__,

«CGetResponse (T.E.1.1,T.E.2.1,T.E.3.1)

GetNextRequest (T.E.1.1,T.E.21,T.E3.1) |

| «—CGetResponse (T.E.1.2,T.E.2.2,T.E.3.2) T.E1.1 || T.E.21 | | T.E.3.1

GetNextRequest (T.E.1.2,TE22TE3.2)__,

| «— GetResponse (T.E.1.3,T.E.2.3,T.E.3.3)

GetNextRequest (T.E.1.3,T.E.2.3,T.E.3.3) |

« GetResponse (T.E.14,T.E24,T.E3.4)
T.EA13 || T.E23| | T.E33

GetNextRequest (T.E.1.4,T.E24TE3.4)_,]|

«—CetResponse (T.E.2.1,T.E.3.1,Z)

TE1.2 || T.E22| | TES3.2

TE14 || TE24| | TE34

Figure 6.40 Get-Next-Request Operation for MIB in Figure 6.39

A
B
—————— GetBulkRequest (2,3,
ABTE1NTEZTE3)
Manager Response (A, B, S Agent T
Process TE11,TE21, TE31 Process |
« 1.E1.2, TE22 TE3.2
TE13,TE23 TE33) E

T GetBulkRequest (0,3,

TEA3, TE23, TE33)—

TE11 || TE21 | | T.E.3.1

Response (T.E.1.4, T.E.24, T.E.34, Z, "endOfMibView")

— T.E1.2|| TE22| | T.E.3.2

TE13 || T.E23 || T.E33

T.E1.4 T.E24 || T.E34

z

Figure 6.41 Get-Bulk-Request Operation for MIB in Figure 6.39

clause. For example, we may want to know what interface is associated with a /inkUp trap. In this case
the linkUp NOTIFICATION-TYPE would have iffndex as an object in its OBJECTS clause, as shown
in Figure 6.44.

An InformRequest PDU is generated by a manager (in contrast to a trap generated by an agent) to
inform another manager of information in its MIB view. While a trap is received passively by a manager,
an InformRequest generates a response in the receiving manager to send to the sending manager.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 249

Manager Agent
Process Process
T —————_ GetBulkRequest (1,3,
sysUpTime,

atPhysAddress) \

Response((sysUpTime.0 = "315131795"),

[
(atPhysAddress.13.172.46.46.1 = "0000000C3920AC") atlfindex atPhysAddress | atNetAddress
(atPhysAddress.16.172.46.49.1 = "0000000C3920AF") 23 0000000C3920B4| 192.68.3.1

le—— (atPhysAddress.23.192.68.3.1 = "0000000C3920B4")) 13 0000000C3920AC| 172.46.46.1

‘———_________ GetBulkRequest (1,3, 16 0000000C3920AF| 172.46.49.1

sysUpTime,
atPhysAddress.23.192.168.3.1) _‘—\—‘__\»

. I
Response((sysUpTime.0 = "315131800"),

(ipForwarding.0 = "1"))

L
Figure 6.42 Get-Bulk-Request Example
PDU RequestiD Error Error VarBind 1 | VarBind 1 VarBind 2 VarBind 2
Type q Status Index sysUpTime value snmpTrapOID value

Figure 6.43 SNMPv2 Trap PDU

- \
linkUp NOTIFICATION-TYPE
OBJECTS { ifindex }
STATUS current
DESCRIPTION “A linkUp trap signifies that the SNSMPv2 entity,
acting in an agent role, recognizes that one of the
communication links represented in its configuration
_ has come up.)

Figure 6.44 Example of an OBJECTS Clause in a NOTIFICATION-TYPE Macro

6.6 COMPATIBILITY WITH SNMPv1

An SNMP proxy server, in general, converts a set of non-SNMP entities into a set of SNMP-defined
MIB entities. Unfortunately, SNMPv2 MIB is not backward compatible with SNMPv1 and hence req-
uires conversion of messages. SNMPv2 IETF Working Group has proposed [RFC 1908] two schemes
for migration from SNMPv1 to SNMPv2: bilingual manager and SNMP proxy server.

6.6.1 Bilingual Manager

One of the migration paths to transition to SNMPv2 from version | is to implement both SNMPv1 and
SNMPv2 interpreter modules in the manager with a database that has profiles of the agents’ version. The
interpreter modules do all the conversions of MIB variables and SNMP protocol operations in both direc-
tions. The bilingual manager does the common functions needed for a management system. The SNMP

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

250 e« Network Management

PDU contains the version number field to identify the version (see Figure 5.5). This arrangement is shown in
Figure 6.45. This is expensive to implement and maintain. The alternative scheme is to use a proxy server.

6.6.2 SNMP Proxy Server

The SNMPv2 proxy server configuration is shown in Figure 6.46. The requests to and responses from,
as well as traps from, SNMPv2 agents are processed by the SNMPv2 manager with no changes. A
proxy server is implemented as a front-end module to the SNMPv2 manager for communication with
SNMPv1 agents.

Figure 6.47 details the conversions that are done by an SNMP v2—v1 proxy server. The get-Request,
GetNextRequest-PDU, and Set-Request-PDU from the SNMPv2 manager are passed through unaltered
by the proxy server. There are two modifications done to the GetBulkRequest PDU. The values for the
two fields, non-repeaters and max-repetitions, are set to zero and transmitted as GetNextRequest PDU.
The GetResponse from SNMPv1 is passed through unaltered by the proxy server to the SNMPv2 man-
ager, unless a response has a tooBigError value. In the exception case, the contents of the variable-bind-
ing field are removed before propagating the response. The trap from the SNMPv1 agent is prepended
with two VarBind fields, sysUpTime.0 and snmpTrapOID.0, with their associated values and then passed
on to the SNMPv2 manager as SNMPv2-Trap PDU.

S
Bilingual Manager Agent
Profile

SNMPv1 SNMPv2

Interpreter Interpreter

Figure 6.45 SNMP Bilingual Manager

SNMPv2 Manager

Proxy
Server

SNMPv1 SNMPv2
Agents Agents

Figure 6.46 SNMPv2 Proxy Server Configuration

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 251

SNMPv2 Manager SNMP v2-v1 Proxy Server SNMPv1 Agent
GetRequest Pass-Through @‘,>
| GetNextRequest Pass-Through GetNextRequest>
SetRequest Pass-Through @

Set::1 non-repeaters = 0:
GetBulkRequest 2. max-repetitions = 0; GetNextRequest
3. PDU tag to GetNextRequest-PDU

Pass-Through
Response Exception: For 'tooBig' error, contents of variable-bindings GetResponse
field removed .

SNMPv2-Trap Prepend VarBind: 1. sysUpTime.0 El

2. snmpTrapQID.0

Figure 6.47 SNMP v2-v1 Proxy Server

== Summary

A significant number of network management systems and agents that are on the market today use
SNMP version 1, referred to as SNMPv1. However, some of the features that have been added to
SNMPv1 have been formally defined in SNMPv2. We have learned enhancements in SNMPv2 over that
of SNMPv1 in this chapter.

The enhancements to SNMP architecture are the formalization of manager-to-manager communication
and the inclusion of traps as part of the SMI and messages, instead of as an appendix to SMI as in
SNMPv1. Three additional messages have been added. They are get-bulk-request, inform-request, and
report. Only get-bulk-request and inform-request details have been defined and the report is left to the
implementers of a system. The report is not used in practice at present.

There are several changes to SMI in SMIv2. Modules are formally introduced using the MODULE-
IDENTITY macro. An OBJECT-IDENTITY macro defines the MIB objects; and a NOTIFICATION-TYPE
macro defines traps and notifications. SMIv2 has been split into three parts, each being defined in
a separate RFC. They are module definitions, textual conventions, and conformance specifications.
Module definitions specify the rules for defining new modules. Textual conventions help define
precise descriptions of modules for human understanding. Conformance specifications are intended
to interpret what the vendor is specifying in the network component with regard to compliance with
SNMP management. Object groups are introduced to group a number of related entities. Conformance
specifications detail the mandatory groups that should be implemented to be SNMP conformant. The
object groups also help vendors define the capabilities of the system when they implement additional
groups beyond that of mandatory ones.

Two new modules have been added to the Internet module. They are security and snmpV2. The
security module is, as of now, a placeholder in the MIB tree as no consensus could be reached within
the working group in defining it. It is specified in SNMPv3, which is covered in Chapter 7. The System
and SNMP groups have been modified in the Internet MIB. Additional objects have been added to the
System group that supports various MIB modules. A large number of entities have been made obsolete
in the SNMP module. Obsolete entities are defined as an obsolete group in the SNMPv2 module.
The SNMPv2 module also defines the MIB definition for compliance groups. Object groups defining a
collection of related entities are defined to specify vendor compliance and capabilities.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

252

Network Management

All protocol PDUs, including trap, have been unified into a common data format. The newly introduced
get-bulk-request is intended to improve the efficiency of get-next request in SNMPv1 by retrieving data
in large quantities. The get-next-request is still maintained in this version. Interoperability between
management systems has been facilitated by a new message, inform-request. We have given a
conceptual presentation of table management, as this has become important when multiple management
systems try to set configuration on an agent at the same time.

The unfortunate part of SNMPV2 is that it is not backward compatible with SNMPv1. Two schemes
have been recommended for migrating from version 1 to version 2. Proxy server is the preferred approach
over that of a bilingual manager. Proxy server can also be developed for managing non-SNMP agents
with an SNMP manager.

IE" Exercises

1.

Define the OBJECT-IDENTITY module for the following objects mentioned in Exercise 4.11:

(a) hats

(b) jacketQuantity

Write the OBJECT TYPE modules for ipAddrTable, ipAddrEntry, and ipAdEntlfindex in an IP
address translation table shown in Figure 4.20 in SMIv2.

Add two columnar objects, cardNumber (of interface card) and portNumber (port in the interface
card), to an IP address table in a router. The index values for the IP address table rows are
150.50.51.1, 150.50.52.1, 150.50.53.1, and 150.50.54.1. The packets to the first two addresses
are directed to ports 1 and 2 of interface card 1. The last two addresses refer to ports 1 and 2 of
interface card 2.

(a) Draw a conceptual base table and an augmented table (ipAug 1).
(b) Presentthe ASN.1 constructs for both down to the leaf level of the MIB tree. Limit your leaf for
ipTable to ipAdEntAddr object.

Table 6.12 shows the output of a network management system detailing the addresses of a
router in a network. Three columnar objects (Index, IP Address, and Physical Address) belong
to the Address Translation table, atTable. Treat the other three columns as belonging to an
augmented table, atAugTable (atAug 1). Repeat Exercises 3(a) and (b) for this case. Use SMIv2
textual conventions.

Table 6.12 Table for Exercise 4

atlfindex intType intNumber PortNumber IP Address Physical Address

atNetAddress atPhysAddress

= ~N N O g W

172.46.41.1 00:00:0¢c:35:C1:D2
172.46.42.1 00:00:0c:35:C1:D3
172.46.43.1 00:00:0c:35:C1:D4
172.46.44 1 00:00:0c:35:C1:D5
172.46.63.1 00:00:0c¢:35:C1:D1
172.46.165.1 00:00:0c:35:C1:D8
172.46.252 1 00:00:0c:35:C1:D0O

(o) INe) BN <) B o) BN e))

15
6

O -~ O O O O O
O O =~ O = LM

In Exercise 3, the router interfaces with subnets are reconfigured as virtual LANs. There is only one
interface cardwithtwo ports handlingtwo subnetseach. The packetstothe twosubnets, 150.50.51.1
and 150.50.52.1, are directed to port 1 of the interface card; and the packets to 150.50.53.1 and
150.50.54.1 are connectedtoport2. The secondtableisthe dependenttable, ipDepTable (ipDep 1).

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 6 e SNMP Management: SNMPv2 o 253

(a) Draw a conceptual base table and a dependent table.
(b) Presentthe ASN.1 constructs for both down to the leaf level of the MIB tree. Limit your leaf for
ipTable to ipAdEntAddr object.
6. Atableis used in a corporation for each branch to maintain an inventory of their equipment in the
agent system located at the branch. The inventory table is maintained remotely from the central
location. Items can be added, deleted, or changed. The objects that make up the table are:

Branch ID {corp 100}

Table name invTable

Row name invEntry
Columnar object 1 invStatus
Columnar object 2 invNumber (index)
Columnar object 3 make

Columnar object 4 model

Columnar object 5 serNumber

(a) Draw the inventory conceptual table.
(b) Write the detailed ASN.1 constructs for the table.

7. In Exercise 6, the following equipment is to be added as the 100th inventory number:

make Sun
model Ultrab
serNumber 512345

(a) Add the conceptual row to the table in Exercise 6(a).
(b) Draw the operational sequence diagram for create-and-go operation to create the new
row.

8. In Exercise 6, equipment with the inventory number 50 is no longer in use and is hence to be
deleted. Draw the operational sequence to delete the conceptual row.

9. Generate an ASN.1 OBJECT-GROUP macro for Address Translation group in SNMPv2
implementation.

10. Draw request-response messages, as shown in Figure 6.40 and Figure 6.41, to retrieve all
columnar objects of the Address Translation group shown in Table 6.13. Assume that you know
the number of rows in the table in making requests.

(a) get-next-request and response
(b) get-bulk-request and response
(c) Compare the results of (a) and (b)

Table 6.13 Table for Exercises 10

INDEX IP ADDRESS PHYSICAL ADDRESS
172.46.41.1 00:00:0c:35:C1:D2
172.46.42.1 00:00:0c:35:C1:D3
172.46.43.1 00:00:0c:35:C1:D4
172.46.44 1 00:00:0c:35:C1:D5
172.46.63.1 00:00:0c:35:C1:D1
172.46.165.1 00:00:0c:35:C1:D8
172.46.252.1 00:00:0c:35:C1:D0

= NN OO W

11. Fillin the values for the SNMPv2 Trap PDU shown in Figure 6.43 for a message sent by the hub
shown in Figure 4.2(a) one second after it is reset following a failure. (You may want to compare
the result with that of Exercise 3 in Chapter 5 for SNMPv1.)

