Username: pnu@12345 almobaireek Book: Network Management, 2nd Edition . No part of any chapter or book may be
reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the
publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws
(see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the
full extent of U.S. Federal and Massachusetts laws.

SNMPv1 Network Management:
Communication and Functional Models

o Communication model: Administrative and o Message PDU

messages o SNMP protocol specifications
o Administrative structure e SNMP operations

= Community-based model o SNMP MIB

" Access policy o SNMP functional model

= MIB view

We have covered the organization and information models of SNMPv1 in the previous chapter. In this
chapter we will address the SNMPv1 communication and functional models. Although SNMPv1 does
not formally define the functional model, applications are built in the community-based access policy

of the SNMP administrative model.

5.1 SNMP COMMUNICATION MODEL

The SNMPvIl communication model defines specifications of four aspects of SNMP communication:
architecture, administrative model that defines data access policy, SNMP protocol, and SNMP MIB.
Security in SNMP is managed by defining community, and only members belonging to the same
community can communicate with each other. A manager can belong to multiple communities and can
thus manage multiple domains. SNMP protocol specifications and messages are presented. SNMP entities
are grouped into an SNMP MIB module.

511 SNMP Architecture

The SNMP architectural model consists of a collection of network management stations and network
elements or objects. Network elements have management agents built in them, if they are managed

Username: pnu@12345 almobaireek Book: Network Management, 2nd Edition . No part of any chapter or book may be
reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the
publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws
(see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the
full extent of U.S. Federal and Massachusetts laws.

Chapter 5 o SNMPv1 Network Management: Communication and Functional Models ¢ 185

elements. The SNMP communications protocol is used to communicate information between network
management stations and management agents in the elements.

There are three goals of the architecture in the original specifications of SNMP [RFC 1157]. First,
it should minimize the number and complexity of management functions realized by the management
agent. Secondly, it should be flexible for future expansion (addition of new aspects of operation and
management). Lastly, the architecture should be independent of architecture and mechanisms of par-
ticular hosts and gateways.

Only non-aggregate objects are communicated using SNMP. The aggregate objects are communi-
cated as instances of the object. This has been enhanced in SNMPv2, as we shall see in the next chapter.
Consistent with the rest of SNMP standards, ASN.1 transfer syntax and BER encoding scheme are used
for data transfer SNMP.

SNMP monitors the network with the five messages shown in Figure 4.9; and we discussed them in Sec-
tion 4.6. They comprise three basic messages: set, get, and trap. Information about the network is primarily
obtained by the management stations polling the agents. The get-request and get-next-request messages
are generated by the manager to retrieve data from network elements using associated management agents.
The set-request is used to initialize and edit network element parameters. The get-response-request is the
response from the agent to get and set messages from the manager. The number of unsolicited messages in
the form of traps is limited to make the architecture simple and to minimize traffic.

There are three types of traps—generic-trap, specific-trap, and time-stamp, which are application
specific. The generic-trap type consists of coldStart, warmStart, linkDown, linkUp, authenticationFailure,
egpNeighborLoss, and enterpriseSpecific. The specific-trap is a specific code and is generated even
when an enterpriseSpecific trap is not present. An example of this would be to gather statistics whenever
a particular event occurs, such as use by a particular group. The time-stamp trap is the time elapsed
between the last initialization or re-initialization of the element and the generation of the trap.

SNMP messages are exchanged using a connectionless UDP transport protocol in order to be consis-
tent with simplicity of the model, as well as to reduce traffic. However, the mechanisms of SNMP are
suitable for a variety of protocols.

51.2 Administrative Model

Although the topic of administrative models should normally be discussed as part of security and pri-
vacy under the functional model, at this point it helps to understand the administrative relationship
among entities that participate in the communication protocol in SNMP. Hence, we will discuss it now.

In RFC 1157 the entities residing in management stations and network elements are called SNMP
application entities. Peer processes, which implement SNMP, and thus support SNMP application enti-
ties, are termed protocol entities. We will soon discuss protocol entities in detail. First, let us look at the
application entities.

We will refer to the application entity residing in the management station as the SNMP manager,
and the application entity in the element as the SNMP agent. The pairing of the two entities is called
an SNMP community. The SNMP community name, called the community, is specified by a string of
octets. Multiple pairs can belong to the same community. Figure 5.1 shows multiple SNMP managers
communicating with a single SNMP agent. While an SNMP manager is monitoring traffic on an ele-
ment, another manager may be configuring some administrative information on it. A third manager can
be monitoring it to perform some statistical study. We also have the analogous situation where a man-
ager communicates with multiple agents.

Username: pnu@12345 almobaireek Book: Network Management, 2nd Edition . No part of any chapter or book may be
reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the
publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws
(see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the
full extent of U.S. Federal and Massachusetts laws.

186 e« Network Management

SNMP Manager SNMP Manager SNMP Manager

Authentication Scheme Authentication Scheme Authentication Scheme

+ :

Authentic]Messages

Authentication Scheme

SNMP Agent

Figure 5.1 SNMP Community

With one-to-many, many-to-one, and many-to-many communication links between managers and
agents, a basic authentication scheme and an access policy have been specified in SNMP. Figure 5.1
shows the authentication scheme, which is a filter module in the manager and the agent. The simplest
form of authentication is the common community name between the two application entities. Encryp-
tion would be a higher level of authentication in which case both the source and the receiver know the
common encryption and decryption algorithms.

The SNMP authorization is implemented as part of managed object MIB specifications. We discussed
MIB specifications for managed objects in Chapter 4, and will discuss MIB specifications for SNMP
protocol in Section 5.1.4. A network element comprises many managed objects—both standard and
private. However, a management agent may be permitted to view only a subset of the network element’s
managed objects. This is called the community MIB view. In Figure 5.2 the SNMP agent has a MIB view
of objects 2, 3, and 4, although there may be other objects associated with a network element. In addition
to the MIB view, each community name is also assigned an SNMP access mode, either READ-ONLY
or READ-WRITE, as shown in Figure 5.2. A pairing of SNMP MIB views with an SNMP access code
is called a community profile.

A community profile in combination with the access mode of a managed object determines the
operation that can be performed on the object by an agent. For example, in Figure 5.2, an SNMP agent
with READ-WRITE SNMP access mode can perform all operations—get, set, and trap—on objects 2, 3, and
4. On the other hand, if the SNMP agent has READ-ONLY access mode privilege, it can only perform
get and trap operations on objects 2, 3, and 4. Object 1 has a “not-accessible” access mode and hence
no operation can be performed on it.

SNMP Agent

Y | e @m
| |
' { ! }

not-accessible read-only write-only read-write

Object 1 Object 2 Obiject 3 Object 4

SNMP MIB View

Figure 5.2 SNMP Community Profile

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

188 ¢ Network Management

A practical application of the SNMP access policy can be envisioned in an enterprise management
system of a corporation with headquarters in New York and domains or network sites in New York and
San Francisco. Let Manager 1 and Community 1 be associated with San Francisco, and Manager 2 and
Community 2 with New York. Let Manager 3 be the overall network management system, the Manager
of Managers (MoM). Manager 1 manages Agents 1 and 2 associated with network elements in San Fran-
cisco. Manager 2 manages the New York network domain. Manager 1 does not have the view of New
York and Manager 2 cannot perform operations on network elements belonging to the San Francisco
domain. Manager 3 has both community names defined in its profile and hence has the view of the total
enterprise network in New York and San Francisco.

The SNMP access policy has far-reaching consequences beyond that of servicing a TCP/IP-based Internet
SNMP community. It can be extended to managing non-SNMP community using the SNMP proxy access
policy. The SNMP agent associated with the proxy policy is called a proxy agent or commercially, a proxy
server. The proxy agent monitors a non-SNMP community with non-SNMP agents and then converts
objects and data to SNMP-compatible objects and data to feed to an SNMP manager.

Figure 5.4 shows an illustration of SNMP and non-SNMP communities being managed by an SNMP
manager. A practical example of this would be a network of LAN and WAN. LAN could be a TCP/IP
network with SNMP agents. WAN could be an X.25 network, which is not an Internet model, but can be
managed by a proxy agent and integrated into the overall management system.

5.1.3 SNMP Protocol Specifications

Peer processes, which implement SNMP, and thus support SNMP application entities, are termed proto-
col entities. Communication among protocol entities is accomplished using messages encapsulated in a
UDP datagram. An SNMP message consists of a version identifier, an SNMP community name, and a
protocol data unit (PDU). Figure 5.5 shows the encapsulated SNMP message. The version and commu-
nity names are added to the data PDU and along with the application header is passed on to the transport
layer as SNMP PDU. The UDP header is added at the transport layer, which then forms the transport
PDU for the network layer. The addition of the IP header to the Transport PDU forms the Network PDU
for the data link layer (DLC). The network or DLC header is added before the frame is transmitted on
to the physical medium.

An SNMP protocol entity is received on port 161 on the host except for trap, which is received on
port 162. The maximum length of the protocol in SNMPv1 is 484 bytes (1,472 bytes now in practice). It

SNMP Manager
{(Community 1)

SNMP
Agent

Proxy Agent

Non-SNMP
Community

SNMP Community

Figure 5.4 SNMP Proxy Access Policy

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 o SNMPv1 Network Management: Communication and Functional Models ¢ 189

Data PDU Data
Application PDU Application | yersion | Community|Data PDU
Header
Transport PDU UDP icati
Header Application PDU
Network PDU P Transport PDU
Header
Data Link PDU DLC Network PDU
Header

Figure 5.5 Encapsulated SNMP Message

is mandatory that all five PDUs be supported in all implementations: GetRequest-PDU, GetNextRequest-
PDU, GetResponse-PDU, SetRequest-PDU, and Trap-PDU. One of these five data PDUs is the data PDU
that we start with at the top in Figure 5.5. RFC 1157-SNMP Macro definition is given in Figure 5.6.

RFC1157 SNMP DEFINITIONS ::= BEGIN

IMPORTS

ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks
FROM RFC1155 -SMI

--top-level message

Message ::=
SEQUENCE {
version -- version
INTEGER { -1 for this RFC
version-1(0)
h
community -- community name
OCTET STRING,
data -- e.g., PDUs if trivial
ANY -- authentication is being used
}
-- protocol data units
PDUs ::=
CHOICE {

get-request
get-next-request GetRequestPDU,

get-response GetNextRequestPDU,
set-request GetResponse-PDU,
trap SetRequest-PDU,
} Trap-PDU
-- the individual PDUs and commonly used data types will be defined later
END
\. J

Figure 5.6 RFC 1157-SNMP Macro

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

190 « Network Management

e N
-- request/response information

Requestld ::=
INTEGER

ErrorStatus ::=

INTEGER {
noError(0)
tooBig(1)
noSuchName(2)
bad value(3)
readOnly(4)
genErr(5)

}

Errorindex ::=
INTEGER

-- variable bindings

VarBind ::=
SEQUENCE {
name ObjectName
value ObjectSyntax
}
VarBindList ::=
SEQUENCE OF
L VarBind)

Figure 5.7 Get and Set Type PDU ASN.1 Construct [RFC 1157]

Basic operations of the protocol entity involve the following steps as a guide to implementation [RFC
1157]. The protocol entity that generates the message constructs the appropriate data PDU as an ASN.1
object. It then passes the ASN.1 object along with a community name and the transport addresses of
itself and the destination (e.g., 123.234.245.156:161) to the authentication scheme. The authentica-
tion scheme returns another ASN.1 object (possibly encrypted). The protocol entity now constructs the
message to be transmitted with the version number, community name, and the new ASN.1 object, then
serializes it using the BER rules, and transmits it.

The reverse process goes on at the receiver. The message is discarded if an error is encountered in
any of the steps. A trap may be generated in case of authentication failure. On successful receipt of the
message, a return message is generated, if the original message is a get-request.

A managed object is a scalar variable and is simply called a variable. Associated with the variable is
its value. The pairing of the variable and value is called variable binding or VarBind. The data PDU in
the message contains a VarBind pair. For efficiency sake, a list of VarBind pairs can be sent in a mes-
sage. The ASN.1 construct for get and set type of messages is shown in Figure 5.7 and a conceptual
presentation in Figure 5.8. The VarBindList contains n instances of VarBind (pairs).

The PDU type for the five messages are application data types, which are defined in RFC 1157 as:

get-request [0]
get-next-request [1]

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 ¢ SNMPvl Network Management: Communication and Functional Models o 191

PDU RequestiD Error Error VarBind 1 VarBind 1 VarBind n VarBind n
Type d Status Index Name Value Name Value

Figure 5.8 Get and Set Type PDUs

set-request [2]
get-response [3]
trap [4]

In Figure 5.8 RequestID is used to track a message with the expected response or for loss of a mes-
sage (remember UDP is unreliable). Loss-of-message detection is implementation specific, such as time
out if no response is received for a request within a given time. A non-zero ErrorStatus is used to indi-
cate that an error occurred. The convention is not to use 0 if no error is detected. Errorindex is used to
provide additional information on the error status. The value is filled with NULL in those cases where it
is not applicable, such as in get-request data PDU. Otherwise, it is filled with the varBind number where
the error occurred; for example, 1 if the error occurred in the first varBind, 5 if the fifth varBind had
an error and so on.

Figure 5.9 shows the structure for a trap PDU, which contains n VarBinds, i.e., n managed objects.
The enterprise [RFC 1155] and agent-address pertain to the system generating the trap. The generic-trap
consists of seven types as listed in Table 5.1. The integer in parenthesis associated with each name indi-
cates the enumerated INTEGER. The specific-trap is a trap that is not covered by the enterpriseSpecific
trap. Time-stamp indicates the elapsed time since last re-initialization.

VarBind 1| VarBind 1 VarBind n| VarBind n
Name Value Name Value

PDU Agent Generic- | Specific-

Type Enterprise Address| Trap Type | Trap Type Time-Stamp

Figure 5.9 Trap PDU

Table 5.1 Generic Traps

GENERIC-TRAP TYPE DESCRIPTION (BRIEF)

coldStart(0) Sending protocol entity is reinitializing itself; agent
configuration or protocol entity implementation may be
altered

warmStart(1) Sending protocol entity is reinitializing itself; agent
configuration or protocol entity implementation not altered

linkDown(2) Failure of one of the communication links

linkUp(3) One of the links has come up

authenticationFailure(4) Authentication failure

egpNeighborLoss(5) Loss of EGP neighbor

enterpriseSpecific(6) Enterprise-specific trap

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

192 « Network Management

514 SNMP Operations

SNMP operations comprise get and set messages from the manager to the agent, and get and trap mes-
sages from the agent to the manager. We will now look at these operations in detail in this section.

GetRequest PDU Operation. Figure 5.10 shows a sequence of operations in retrieving the values
of objects in a System group. It starts with the get-request operation using a GetRequest PDU from a
manager process to an agent process and the get-response from the agent with a GetResponse PDU. The
message from the manager starts from the left side and ends at the agent process on the right side of the
figure. The message from the agent process starts on the right side of the figure and ends at the manager
process on the left side of the figure. The sequence of directed messages moves with time as we move
down the figure. Messages depicted represent the values of the seven objects in the System group.

The manager process starts the sequence in Figure 5.10 with a GetRequest PDU for the object sys-
Descr. The agent process returns a GetResponse PDU with a value “SunOS.” The manager then sends
a request for sysObjectID and receives the value “E:hp.” The exchange of messages goes on until the
value of 72 for the last object in the group sysServices is received.

GetNextRequest PDU Operation. A get-next-request operation is very similar to get-request,
except that the requested record is the next one to the OBJECT IDENTIFIER specified in the request.
Figure 5.11 shows the operations associated with retrieving data for the System group by the manager
process using the get-next-request. The first message 1s a GetRequest PDU for sysDescr with the response
returning the value “SunOS.” The manager process then issues a GetNextRequest PDU with the OBJECT
IDENTIFIER sysDescr. The agent processes the name of the next OBJECT IDENTIFIER sysObjectID
and its value “E:hp.” The sequence terminates when the manager issues a get-next-request for the object
identifier next to sysServices, and the agent process returns the error message “noSuchName.”

The System group example we just looked at is a simple case where all the objects are single-valued
scalar objects. Let us now consider a more complex scenario of a MIB that contains both scalar and
aggregate objects. A generalized case of a conceptual MIB comprising three scalar objects and a table is

Manager GetRequest (sysDescr.0) > Agent
Process l«-GetResponse (sysDescr .0= “Sun0S”) Process

GetRequest (sysObjectlD.0) ———p-
«——GetResponse (sysObjectID.O=enterprises.11.2.3.101.2) |
GetRequest (sysUpTime.0) ———»
-4 GetResponse (sysUpTime.0=2247349530)
GetRequest (sysContact.0) ———

-«4—GetResponse (sysContact.0="")

GetRequest (sysName.0) —

-4—GetResponse (sysName.0= "noc1”)
GetRequest (sysLocation.0) ———pm

«— GetResponse (sysLocation.0="")
GetRequest (sysServices.0) ———p

«—GetResponse (sysServices.0= 72)

Figure 510 Get-Request Operation for System Group

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 ¢ SNMPv1 Network Management: Communication and Functional Models « 193

GetRequest (sysDescr.0) > Agent
~#—GetResponse (sysDescr.0 = “Sun0S”") Process

GetNextRequest (sysDescr.0) —
~&— GetResponse (sysObjectlD.0O=enterprises.11.2.3.10.1.2)

GetNextRequest (sysObject|D.0) ——pm
~#— GetResponse (sysUpTime.0=2247349530)

GetNextRequest (sysUpTime.0) —pu|

Manager
Process

~+—GetResponse (sysContact.0="")

GetNextRequest (sysContact.0) —p|
~4—GetResponse (sysName.0= “noc1”)

GetNextRequest (sysName.0) —p
~€#—GetResponse (sysLocation.0="")

GetNextRequest (sysLocation.0) —pm
~+—GetResponse (sysServices.0=72)

GetNextRequest (sysServices.0) —pu|
~+——GetResponse (noSuchName)

Figure 5.11 Get-Next-Request Operation for a System Group

shown in Figure 5.12. The first two objects A and B are single-valued scalar objects. They are followed
by an aggregate object represented by the table T with an entry E and two rows of three columnar
objects, T.E.1.1. through T.E.3.2. The MIB group ends with a scalar object Z.

Figure 5.13 shows the use of nine get-request messages to retrieve the nine objects. The left side of
the figure shows the sequential operation for getting the MIB shown on the right side of the figure. The
MIB shown is the same as in Figure 5.12, now drawn to follow the sequence of operations. We observe

Figure 5.12 MIB for Operation Examples in Figures 5.13 and 5.15

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

194 « Network Management

GetRequest (A) A
Manager BEEEE———— gent
Process ~*+—GetResponse (A) Process

GetRequest (B) —— |

~*+—GetResponse (B)

GetRequest (T.E1.1)

~*+GetResponse (T.E.1.1) T

GetRequest (T.E.1.2) | [

~*+GetResponse (T.E.1.2)

GetRequest (T.E.2.1)] E
I
I

~*+GetResponse (T.E.2.1)
GetRequest (T.E.2.2) .| [
~+GetResponse (T.E.2.2) TEAA||T.E2.1| |T.E.3.1
GetRequest (TE.3.1) |
~*+GetResponse (T.E.3.1)
GetRequest (T.E.3.2)y | TEA1.2| |T.E.22||T.E3.2
~*+GetResponse (T.E.3.2)

GetRequest (Z) — |
~4+—Response (Z) z

Figure 5.13 Get-Request Operation for a MIB in Figure 5.12

a few hidden assumptions in retrieving the data using the get-request operations. First, we need to know
all the elements in the MIB including the number of columns and rows in the table. Second, we traversed
the MIB from top to bottom, which is really from right to left in the MIB tree structure. Third, we re-
trieved the data in the table by traversing all the instances of a columnar object. The number of instances
or rows in a table could be dynamic and is not always known to the management process. Thus, if the
manager had issued a request for the object T.E.1.3 after acquiring T.E.1.2, it would have received an
error message from the agent process. This is when get-next-request is very useful. However, we need
to have a convention on the definition of what the next object in a MIB tree is, especially on the table
representing an aggregate object. In SNMP, objects are retrieved using lexicographic convention. We
will first explain what this convention is before using the get-next-request operation to retrieve the same
MIB group data.

The increasing order of entity used in SNMP operations is in lexicographic order. Let us under-
stand lexicographic order by considering a simple set of integers shown in Table 5.2. The left side is a
sequence of numerically increasing integer numbers, and the right side is lexicographically increasing
order for this sequence. We notice that in the lexicographic order, we start with the lowest integer in the
leftmost character, which in our case is 1. Before increasing the order in the first position, we select the
lowest integer in the second position from the left, which is 11. There are two numbers (1118 and 115)
that start with 11. We anchor at 11 for the first two positions and then move on to select the lowest digit
in the third position, which is 111. We then move to the fourth position and obtain 1118 as the second
number. Now, return to the third position and retrieve 115 as the third number. Having exhausted 1s
(ones) in positions two to four, select 2 for the second position, and retrieve 126 as the next number. We
continue this process until we reach 9.

We will now apply the lexicographic sequence to ordering object identifiers in a MIB. Instead of each
character being treated as a literal, we treat each node position as a literal and follow the same rules.
An example illustrating this is given in Table 5.3. The MIB associated with this example is shown in

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 o SNMPv1 Network Management: Communication and Functional Models « 195

Table 5.2 Lexicographic-Order Number Example
NUMERICAL ORDER LEXICOGRAPHIC ORDER

1 1

2 1118

3 115

9 126
15 15
22 2
34 22
115 250
126 2509
250 3
321 321
1118 34
2509 9

Figure 5.14. It can be noticed that the lexicographically increasing order of node traces the traversal of
the tree starting from the leftmost node 1. We traverse down the path all the way to the leftmost leaf
1.1.5, keeping to the right whenever a fork is encountered. We then move up the tree and take a right
on the first fork. This leads us to the leaf node 1.1.18. Thus, the rule at a forked node is to always keep
to the right while traversing down and while going up. Thus, we are always keeping to the right if you
imagine ourselves walking along the tree path and looking in the forward direction. We turn around
when we reach a leaf.

Returning to get-next-request operation, the get-response message contains the value of the next
lexicographic object value in each VarBind. If the request VarBind contains a scalar, non-tabular object,

Table 5.3 MIB Example for Lexicographic Ordering

1
1.1
1.1.5
1.1.18
1.2
1.2.6
2

2.2
2.10
2.10.9

34
3.21

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

196 e« Network Management

Figure 5.14 MIB Example for Lexicographic Ordering

the response contains the next scalar, non-tabular value, or the first columnar object value of a table,
if it 1s the next lexicographic entity. Figure 5.15 shows the principle of operation of the functioning of
get-next-request and response. We use the same MIB view that we had in Figure 5.12 using get-request
operation. The manager process starts the operation with a get-request message for object A and receives
the response with the value of A filled in. Subsequent requests from the manager are get-next-request
type with the object ID of the just received ones. Responses received are the next object ID with its
value. Operations continue until Z is received. The subsequent request receives a response with an error
message “noSuchName.”

A
Manager GetRequest (A) - Agent
Procegss ~GetResponse (A) Prgcess
GetNextRequest (A)— .| B
~#—GetResponse (B)
GetNextRequest (B) —
~*—GetResponse (T.E.1.1) T
GetNextRequest (T.E.1.1) | [
~*—GetResponse (T.E.1.2) .

GetNextRequest (T.E.1.2) .|
~%—GetResponse (T.E.2.1) I
GetNextRequest (T.E.2.1) .| | | |

“‘_GetResponse (T.E2.2) TEA1||TE21| | TES3.1
GetNextRequest (T.E.2.2) _, |
~*—GetResponse (T.E.3.1)
GetNextRequest (T.E.3.1) . TEA1.2||[TE22||T.E3.2
~#—GetResponse (T.E.3.2)
GetNextRequest (T.E.3.2) .|
~*+—GetResponse (Z) z
GetNextRequest (Z) — .|
~#—GetResponse (noSuchName)

Figure 5.15 Get-Next-Request Operation for a MIB in Figure 5.12

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 e SNMPvl Network Management: Communication and Functional Models o 197

Manager Agent

Process \ Process

GetNextRequest (sysUpTime,

atPhysAddress) \

GetResponse((sysUpTime.0 =*315131795"), e
(atPhysAddress.13.172.16.46.1 = “0000000C3920AC"))

<

GetNextRequest (sysUpTime,
atPhysAddress.13.172.16.46.1) atlfindex atPhysAddress | atNetAddress

23 0000000C3920B4(192.168.3.1
\ 13 0000000C3920AC| 172.16.46.1
16 0000000C3920AF| 172.16.49.1

GetResponse((sysUpTime.0 = “315131800"), —— |
(atPhysAddress.16.172.16.49.1 = “0000000C3920AF"))

<

GetNextRequest (sysUpTime,
atPhysAddress.16.172.16.49.1)

T

GetResponse((sysUpTime.0 = “315131805"), —— |
(atPhysAddress.23.192.168.3.1 = “0000000C3920B4"))

<

GetNextRequest (sysUpTime,
atPhysAddress.23.192.168.3.1)

T

T # L ___———-_-_-.
GetResponse((sysUpTime.0 = “315131810"),
)

(ipForwarding.0 = 1"
*-—-!

Figure 5.16 GetNextRequest Example with Indices

There are several advantages in using get-next-request. First, we do not need to know the object iden-
tifier of the next entity. Knowing the current OBJECT IDENTIFIER, we can retrieve the next one. Next,
in the case of an aggregate object, the number of rows is dynamically changing. Thus, we do not know
how many rows exist in the table. The get-next-request resolves this problem.

There is also another advantage of the get-next-request. We can use this to build a MIB tree by repeat-
ing the request from any node to any node. This is called MIB walk, and is used by a MIB browser in
NMS implementation.

Figure 5.16 shows a faster method to retrieve an aggregate object. It shows an Address Translation
table with a matrix of three columnar objects, atlfIndex, atPhysAddress, and atNetAddress. The objects
atlflndex and atNetAddress are the indices that uniquely identify a row. There are three rows in the table.
If we use the get-next-request operation shown in Figure 5.15, it would take us ten message exchanges.
The VarBindList comprises two VarBind name—value pairs, sysUpTime and atPhysAddress, suffixed
with the values of atlfIndex and atNetAddress. Instead of issuing ten get-next-requests with a single
VarBind in the message, the manager generates four GetNextRequest PDUs with a list of two VarBind
fields. Although the Address Translation table is relatively stable, in general, a table is dynamic, and
hence the time-stamp is requested by including sysUpTime.

In this method, the manager has to know the columnar objects of the table. The first query message
retrieves the indices automatically. For the Address Translation table, the atlfIndex and atNetAddress
are indices. This is shown in the request and response message OIDs. The first get-next-request mes-
sage does not contain any operand value. The next three contain the value returned by the response.
The fourth and last get-next-request brings the object, ipForwarding, which is the first element in the

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

198 o Network Management

IP group, which is the next group in Internet MIB. This is because all table entries in the Address Table
have been retrieved. It is up to the manager process to recognize this and terminate the process. If the
table contained more columns, the VarBindList could be expanded and values for all the objects in the
next row obtained with each request.

There are more details to this PDU operation and the reader is referred to the references Perkins and
McGinnis [1997], RFC [1905], and Stallings [1998].

SNMP PDU Format Examples. We will now look at the PDU for the System group example shown
in Figure 5.10 using a sniffer tool. Sniffer is a management tool that can capture packets going across a
transmission medium. We have used this tool to “sniff” some SNMP messages to display how messages
actually look. We are presenting a series of messages that query a system for its system group data (Fig-
ure 5.17). This corresponds to the data shown in Figure 5.10. We then set the missing values for a couple
of entities in the group (Figures 5.18 and 5.19) and finally reexamine them (Figure 5.20).

Figure 5.17(a) shows a GetRequest message for the system group values going from the manager,
noc3.gatech.btc.gatech.edu (noc3, for short), to the agent, nocl.btc.gatech.edu (nocl, for short). The
first line shows that it was sent at 13:55:47 from port 164 of nocl to snmp port of noc3. The tool that
was used has actually translated the conventional port number 161 to snmp. The community name is
public and the GetRequest message is 111 bytes in length. The SNMP version number is not filled in.

a ™
13:55:47.445936 noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp:

Community = public
GetRequest(111)
Request ID =1
system.sysDescr.0
system.sysObjectID.0
system.sysUpTime.0
system.sysContact.0
system.sysName.0
system.syslLocation.0

system.sysServices.0
\ /

(a) Get-Request Message from Manager-to-Agent (Before)

13:55:47.455936 noc1.btc.gatech.edu.snmp > noc3.btc.gatech.edu.164:
Community = public

GetResponse(172)

Request ID =1

system.sysDescr.0 = “SunOS noc1 5.5.1 Generic_103640-08 sun4u”
system.sysObjectID.0 = E:hp.2.3.10.1.2

system.sysUpTime.0 = 247349530

system.sysContact.0 =

system.sysName.0 = “noc1”

system.syslLocation.0 =

system.sysServices.0 = 72

(b) Get-Response Message from Agent-to-Manager (Before)

Figure 5.17 Sniffer Data of Get Messages (Incomplete Data in Agent)

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 o SNMPv1 Network Management: Communication and Functional Models o 199

. ™
13:56:24.894369 noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp:

Community = netman

SetRequest(41)

Request ID =2

system.sysContact.0 = “Brandon Rhodes”

13:56:24.894369 noc1.btc.gatech.edu.snmp > noc3.btc.gatech.edu.164:
Community = netman
GetResponse(41)
Request ID =2
system.sysContact.0 = “Brandon Rhodes”
- J

Figure 5.18 Sniffer Data of Set-Request and Response for System Contact

/13:56:27.874245 noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp:)
Community = netman

SetRequest(37)

Request ID =3

system.syslLocation.0 = “BTC NM Lab”

13:56:27.884244 noc1.btc.gatech.edu.snmp > noc3.btc.gatech.edu.164:
Community = netman
GetResponse(37)
Request ID =3
\system.sysLocation.O = “BTC NM Lab”

J

Figure 5.19 Sniffer Data of Set-Request and Response for System Location

- ™
14:03:36.788270 noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp:

Community = public
GetRequest(111)
Request ID = 4
system.sysDescr.0
system.sysObject|D.0
system.s ysUpTime.0
system.sysContact.0
system.sysName.0
system.sysLocation.0
system.sysServices.0

(a) Get-Request Message from Manager-to-Agent (After)

Figure 5.20 Sniffer Data of Get Messages (Complete Data in Agent)

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

200 e Network Management

e ™
14:03:36.798269 noc1.btc.gatech.edu.snmp > noc3.btc.gat ech.edu.164:
Community = public

GetResponse(196)

Request ID = 4

system.sysDescr.0 = “SunOS noc1 5.5.1 Generic_103640 -08 sun4u”
system.sysObjectlD.0 = E:hp.2.3.10.1.2

system.sysUpTime.0 = 247396453

system.sysContact.0 = “Brandon Rhodes”

system.sysName.0 = “noc1”

system.sysLocation.0 = “BTC NM Lab”

system.sysServices.0 = 72

(b) Get-Response Message from Agent-to-Manager (After)
Figure 5.20 (continued)

The seven object IDs from system.sysDescr.0 to system.sysServices.0 all end with zero to indicate that
they are single-valued scalar objects. The agent, nocl, sends a GetResponse message of 172 bytes with
values filled in for all seven objects. The GetResponse message 1s shown in Figure 5.17(b). Notice that
the values for sysContact and sysLocation in GetResponse are blank as they have not been entered in
the agent. In addition, the request number identified in the GetResponse PDU is the same as the one in
the GetRequest PDU.

Figure 5.18 shows the use of the SetRequest message to write the sysContact name in nocl whose
value is “Brandon Rhodes.” Notice that the community name is changed to netman. The community of
netman has the access privilege to write in nocl, and the object, system.sysContact, has the read-write
access for the netman community. The agent, nocl, makes the change and sends a GetResponse mes-
sage back to noc3. Figure 5.19 shows a similar set of messages for setting the entity sysLocation with
the value “BTC NM Lab.”

Figures 5.20(a) and (b) are a repetition of Figure 5.14 of the GetRequest and GetResponse messages.
We now see the completed version of the system group data.

5.1.5 SNMP MIB Group

Figure 5.21 shows the MIB tree for the SNMP group, and Table 5.4 gives the description of the entities.
Note that OID 7 and OID 23 are not used. The number of transactions in the description column in the
table indicates ins and outs of the SNMP protocol entity. All entities except snmpEnableAuthenTraps
have the syntax, Counter. The implementation of the SNMP group is mandatory—obviously!

5.2 FUNCTIONAL MODEL

There are no formal specifications of functions in SNMPv] management. Application functions are
limited, in general, to network management in SNMP and not to the services provided by the network.

There are five areas of functions (configuration, fault, performance, security, and accounting)
addressed by the OSI mode. Some configuration functions, as well as security and privacy-related
issues, were addressed as part of the SNMP protocol entity specifications in the previous section. For

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 e SNMPvl Network Management: Communication and Functional Models o 201

snmp
(mib-2 11)
il
snmplnPkts(1) | \ snmpEnableAuthenTraps (30)
LsnmpOuthts (2) | \ | snmpOutTraps (ZQ)J
snmpinBadVersions (3) | .] snmpOutGetResponses (28)
snmplnCommunityNames (4) | | snmpOutSetRequests (27)
snmplnBadCommunityUses (5) | I snmpOutGetNexts (26)
snmplnASNParseErrors (6) | I snmpOutGetRequests (25)
-- not used (7) | I snmpOutGenErrs (24)
snmpInTooBigs (8) | | -- not used (23)
snmpIinNoSuchNames (9) I | snmpQOutBadValues (22)
snmplnBadValues (10) | | snmpOutNoSuchNames (21)
snmplnReadOnlys (11) | snmpOutTooBigs (20)
snmpInGenErrs (12) | snmpinTraps (19)
snmplnTotalReqVars (13) snmpinGetResponses (18)
snmpinTotalSetVars (14) snmpinSetRequests (17)
snmplnGetRequests (15) snmpinGetNexts (16)

Figure 5.21 SNMP Group

example, the override function of traps is one of the objects in the SNMP group, which has the access
privilege of read and write and hence can be set remotely. Security functions are built in as part of the
implementation of the protocol entity. Community specifications and authentication scheme partially
address these requirements.

The write access to managed objects is limited to implementation in most cases. Thus, configuration
management in general is addressed by the specific network management system or by the use of con-
sole or telnet to set configurable parameters. We saw the use of the configuration management function
in the examples shown in Figures 5.18 and 5.19.

Fault management is addressed by error counters built into the agents. They can be read by the
SNMP manager and processed. Traps are useful to monitor network elements and interfaces going up
and down.

Performance counters are part of the SNMP agent MIB. It is the function of the SNMP manager to do
performance analysis. For example, counter readings can be taken at two instances of time and the data
rate calculated. The intermediate manager/agent, such as RMON, can perform such statistical functions,
as we will see in the next chapter.

The administrative model in protocol entity specifications addresses security function in basic
SNMP.

The accounting function is not addressed by the SNMP model.

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

202 « Network Management
Table 5.4 SNMP Group

ENTITY oID DESCRIPTION (BRIEF)

snmplnPkts snmp (1) Total number of messages delivered from transport service

snmpOutPkts snmp (2) Total number of messages delivered to transport service

snmplnBadVersions snmp (3) Total number of messages from transport service that are of
unsupported version

snmplnBadCommunityNames snmp (4) Total number of messages from transport service that are of
unknown community name

snmplnBadCommunityUses snmp (5) Total number of messages from transport service, not
allowed operation by the sending community

snmplnASNParseErrs snmp (6) Total number of ASN.1 and BER errors

snmp (7) Not used

snmplnTooBigs snmp (8) Total number of messages from transport service that have
‘tooBig’ errors

snmplnNoSuchNames snmp (9) Total number of messages from transport service that have
‘noSuchName’ errors

snmplnBadValues snmp (10) Total number of messages from transport service that have
‘badValue’ errors

snmplnReadOnlys snmp (11) Total number of messages from transport service that have
‘readOnly’ errors

snmplnGenErrs snmp (12) Total number of messages from transport service that have
‘genkrr’ errors

snmplnTotalReqVars snmp (13) Total number of successful Get-Request and Get-Next
messages received

snmplnTotalSetVars snmp (14) Total number of objects successfully altered by Set-Request
messages received

snmplnGetRequests snmp (15) Total number of Get-Request PDUs accepted and processed

snmplnGetNexts snmp (16) Total number of Get-Next PDUs accepted and processed

snmplnSetRequests snmp (17) Total number of Set-Request PDUs accepted and processed

snmplnGetResponses snmp (18) Total number of Get-Response PDUs accepted and
processed

snmplinTraps snmp (19) Total number of Trap PDUs accepted and processed

snmpQOutTooBigs snmp (20) Total number of SNMP PDUs generated for which error-
status is ‘tooBig’

snmpOutNoSuchNames snmp (21) Total number of SNMP PDUs generated for which error-
status is ‘noSuchName’

snmpOutBadValues snmp (22) Total number of SNMP PDUs generated for which error-
status is ‘badValue’

snmp (23) Not used

snmpOutGenErrs snmp (24) Total number of SNMP PDUs generated for which error-
status is ‘genErr’

snmpOutGetRequests snmp (25) Total number of SNMP Get-Request PDUs generated

snmpOutGetNexts snmp (26) Total number of SNMP Get-Next PDUs generated

snmpOutSetRequests snmp (27) Total number of SNMP Set-Request PDUs generated

snmpOutGetResponses snmp (28) Total number of SNMP Get-Response PDUs generated

snmpQutTraps snmp (29) Total number of SNMP Trap PDUs generated

snmpEnableAuthenTraps snmp (30) Override option to generate authentication failure traps

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 ¢ SNMPv1 Network Management: Communication and Functional Models « 203

K" Summary

All management operations are done using five messages in SNMPv1. They are get-request, get-next-
request, set-request, get-response, and trap. The first three are sent from the manager to the agent and
the last two are sent by the agent to the manager.

The SNMP communication model deals with the administrative structure and the five SNMP message
PDUs. The administrative model defines the community within which messages can be exchanged. It
also defines the access policy as to who has access privilege to what data. The five protocol entities are
defined in ASN.1 format and macros. We learned SNMP operations by tracing messages exchanged
between manager and agent processes. We then looked inside PDU formats for various messages to
learn the data formats.

There is no formal specification for the functional model in SNMP management. However, management
functions are accomplished by built-in schemes and managed objects. The administrative model in
SNMP and the operations using managed objects are employed to accomplish various functions.

= Exercises

1. Three managed hubs with interface id 11-13 (fourth decimal position value) in subnetwork
200.100.100.1 are being monitored by a network management system (NMS) for mean time
between failures using the SysUpTime in system {internet. mgmt.mib-2.system} group. The NMS
periodically issues the command get-request object-instance community OBJECT IDENTIFIER
Fill the operands in the three set of requests that the NMS sends out. Use “public” for the
community variable.

2. You are assigned the task of writing specifications for configuring SNMP managers and agents
for a corporate network to implement the access policy. The policy defines a community profile
for all managed network components where a public group (community name public) can only
look at the System group, a privileged group (community name privileged) that can look at all
the MIB objects, and an exclusive group (community name exclusive) that can do a read-write
on all allowed components. Present a figure (similar, but not identical, to the flow chart shown
in Figure 5.2) showing the paths from the SNMP managers to managed objects of a network
component.

3. Fillin the data in the trap PDU format shown in Figure 5.9 for a message sent by the hub shown
in Figure 4.2(a) one second after it is reset following a failure. Treat the trap as generic and leave
the specific trap field blank. The only varBind that the trap sends is sysUpTime. (Refer to RFC
1157 and RFC 1215.)

4. An SNMP manager sends a request message to an SNMP agent requesting sysUpTime at
8:00 A.M. Fill in the data for the fields of an SNMP PDU shown in Figure 5.5. Please use “SNMP”
for the application header, enumerated INTEGER 0 for version-1, and “public” for community
name.

5. In Exercise 4, if the SNMP manager sent the request at 8:00 A.M. and the SNMP agent was
reset at midnight after a failure, fill in the fields for the SNMP PDU on the response received.

6. An SNMP manager sends a request for the values of the sysUpTime in the System group and if
Type in the Interfaces group for ifNumber value of 3. Write the PDUs with the fields filled in for

(a) the get-request PDU, and
(b) the get-response PDU with noSuchName error message for ifType

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

204 e« Network Management

7. The following data response information is received by the manager for a get-request with a
varBindList. Compose

(a) the get-request PDU, and
(b) the get-response PDU

OBJECT VALUE
Error Status Too big
Error Index udplnErrors
udpInDatagrams 500,000
udpNoPorts 1,000
udpInErrors 5000

udpOutDatagrams 300,000

8. Draw the message sequence diagram similar to the one shown in Figure 5.10 for the hub
example given in Figure 4.2(a). Assume that a separate get-request message is sent for each
data value.

9. Repeat Exercise 7 with a VarBindList. Use the format of Figure 5.16.
10. For the UDP Group MIB shown in Figure 4.39, assume that there are three rows for the columnar

objects in the udpTable. Write the OBJECT IDENTIFIER for all the objects in lexicographic
order.

11. Draw the message sequence diagram for the following ipNetToMediaTable retrieving all the
values of objects in each row with single get-next-request commands, similar to the one shown
in Figure 5.16. The indices are ipNeiToMedialflndex and ipNetToMediaNetAddress. Ignore
obtaining sysUpTime.

ipNetToMedia IpNetToMediaPhys ipNetToMediaNet ipNetTo

Ifindex Address Address MediaType
25 00000C3920B4 192.68.252.15 4
16 00000C3920AF 172.16.49.1 4
9 00000C3920A6 172.16.55.1 4
2 00000C39209D 172.16.56.1 4

12. Compose data frames for SNMP PDUs for the example shown in Figure 5.16 for the following
two cases:

(a) The first GetNextRequest (sysUpTime, atPhysAddress) and the GetResponse.
(b) The second GetNextRequest and GetResponse with values obtained in (a).

13. Adata analyzer tool is used to look at a frame of data traversing a LAN. It is from the station noc3
in response to a request from noc1. Use the following system status to answer this question.

Version =0
Community = netman

Username: amal alharthi Book: Network Management, 2nd Edition . No part of any chapter or book may be reproduced or
transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of
the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17
USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full
extent of U.S. Federal and Massachusetts laws.

Chapter 5 e SNMPvl Network Management: Communication and Functional Models ¢ 205

OBJECT VALUE UNITS

Request ID 100

Error Status Too big udpInErrors too high
Error Index udplnErrors

sysUpTime 1,000,000 hundredths of a second
udplnDatagrams 500,000 datagrams

udpNoPorts 1,000 datagrams

udplInErrors 5000 datagrams
udpOutDatagrams 300,000 datagrams

Compose the expected data frames for SNMP PDU types. Your frames should look like the ones
shown in Figure 5.17.

(a) Get Request from the manager to the managed object.
(b) Get Response from the managed object to the manager.

