Chapter 1

- Internet is based on TCP/IP
- IP is Internet protocol at the network layer level
- TCP is connection-oriented transport protocol and ensures end-to-end connection
- UDP is connectionless transport protocol and provides datagram service
- The Internet Control Message Protocol (ICMP) part of TCP/IP suite

Data link layer consist of two sublayers: Logical link control AND Media access control

- o (LLC): Formats the data to go on the medium; performs error control and flow control
- o (MAC): Controls data transfer to and from LAN; resolves conflicts with other data on LAN
- Protocol Data Unit (PDU) Information that is delivered as a unit among peer entities of a network and that may contain control information, such as address information, or user data.

Common Network Problems:

- Loss of connectivity
- Duplicate IP address
- Intermittent (interrupted) problems
- · Network configuration issues
- Non-problems
- Performance problems

Chapter 3

Network Models

- OSI
- Internet
- TMN
- IEEE 802
- Web-based

Management communication protocols

SNMP
 CMIP
 XML
 CORBA

ASN.1 language

SyntaxMacro

SMI describes <u>how the management information</u> is structured and MIB deals with the <u>relationship and storage of management information</u>.

The two primary communications protocols are CMIP in OSI and SNMP in the Internet.

OSI Architecture and Model	SNMP Architecture and Model	
Organization	Organization	
 Network management components 	 Network management components 	
 Functions of components 	 Functions of components 	
 Relationships 	 Relationships 	
Information	Information	
 Structure of management information (SMI) 	 Structure of management information (SMI) 	
 Syntax and semantics 	 Syntax and semantics 	
 Management information base (MIB) 	 Management information base (MIB) 	
 Organization of management information 	 Organization of management information 	
Object-oriented	 Object-oriented 	
	• (but scalar)	
Communication	Communication	
 Transfer syntax with bidirectional messages 	 Messages less complex than OSI and unidirectional 	
 Transfer structure (PDU) 	 Transfer structure (PDU) 	
• Functions	 Functions 	
Application functions	 Application functions 	
 Configure components 	 Fault management 	
Monitor components	 Configuration management 	
Measure performance	 Account management 	
Secure information	Performance management	
Usage accounting	Security management	

Manager

- Sends requests to agents
- Monitors alarms
- Houses applications
- Provides user interface

Agent

- Gathers information from objects
- Configures parameters of objects
- Responds to managers' requests
- Generates alarms and sends them to managers

Managed object

- Network element that is managed
- Houses management agent
- All objects are not managed / manageable

MIB: It is a <u>virtual</u> database that is compiled into management module MDB: physical database

Keyword Example:

• CHOICE • SET • SEQUENCE • OF • NULL

Chapter 4

5 Massages between Manager and Agent: First 3 for Manager and last 2 for Agent.

- o Get-Request
 - Sent by manager requesting data from agent
- Get-Next-Request
 - Sent by manager requesting data on the **next** MO to the one specified
- Set-Request
 - Initializes or changes the value of network element
- Get-Response
 - Agent responds with data for get and set requests from the manager
- ⊃ **Trap**
 - Alarm generated by an agent

SEQUENCE and SEQUENCE OF They are used to build lists and tables.

Chapter 5

There are **three** types of traps — **generic-trap**, **specific-trap**, and **time-stamp**, which are application specific.

• The **generic-trap** type consists of coldStart, warmStart, linkDown, linkUp, authentication Failure, egpNeighborLoss, and enterpriseSpecific.

Chapter 6

Textual Conventions are designed to help define new data types.

SNMPv2 New Massages:

- inform-request
 - manager-to-manager message
- get-bulk-request
 - transfer of large data
- report
 - not used

createAndGo AND createAndWait

Table 6.4 RowStatus Textual Convention

State	Enumer-	Description
	ation	·
active	1	Row exists and is operational
notInService	2	Operation on the row is suspended
notReady		Row does not have all the columnar objects needed
createAndGo		This is a one-step process of creation of a row; immediately goes into active state
createAndWait		Row is under creation and should not be commissioned into service
destroy		Same as Invalid in EntryStatus. Row should be deleted

Chapter 7

SNMPv3 formally defines five types of applications.

They are command generator, command responder, notification originator, notification receiver, and proxy forwarder.

Chapter 8

Remote monitoring is monitoring the network using remotely positioned probes in various segments in the network.

RMON1 was initially defined for data link level parameters of <u>Ethernet LAN</u>. It was then extended to token-ring LAN.

RMON2 development followed to monitor and produce statistics for parameters associated with the upper layers, from the network to the application level.

- RMON1: Monitoring Ethernet LAN and token-ring LAN
- RMON2: Monitoring upper protocol layers

Functions For RMON

- · Statistics on Ethernet, token ring, and hosts / conversations
- Filter group filters data prior to capture of data
- Generation of alarms and events

Ten groups divided into three categories

- **Statistics groups** (rmon 1, 2, 4, 5, 6, and 10)
- Event reporting groups (rmon 3 and 9)
- Filter and packet capture groups (rmon 7 and 8)

RMON Components

- 1. RMON Probe
 - Data gatherer a physical device
- Data analyzer
 - Processor that analyzes data

Chapter 9

NAME

Basic Network Software Tools

- · Status monitoring tools
- Traffic monitoring tools
- Route monitoring tools

nslookup: An interactive program for querying Internet Domain Name System servers.

Converts a hostname into an IP address and vice versa querying DNS

Useful to identify the subnet a host or node belongs to.

dig: Used to gather lots of information on hosts from DNS

Ping:

- Useful for measuring connectivity
- Useful for measuring packet loss

SYSTEM ifconfig Linux Obtains and configures networking interface parameters and status Linux/Windows ping Checks the status of node/host nslookup Linux/Windows Looks up DNS for name-IP address translation dig Linux Queries DNS server (supersedes nslookup) host Linux Displays information on Internet hosts/domains

Table 9.1 Status-Monitoring Tools

DESCRIPTION

OPERATING

Table 9.2 Traffic monitoring tools

Name	Operating System	Description
ping	UNIX / Windows	Used for measuring roundtrip packet loss
bing	UNIX	Measures point-to-point bandwidth of a link
tcpdump	UNIX	Dumps traffic on a network
getethers	UNIX	Acquires all host addresses of an Ethernet LAN segment
iptrace	UNIX	Measures performance of gateways
ethereal, wireshark	Linux / Windows	Graphical tool to capture, inspect , and to save Ethernet packets

netstat is a useful diagnostic tool for troubleshooting. **traceroute** (UNIX) or **tracert** (MS Windows), which is the basic tool used most extensively to diagnose routing problems. The tool discovers the route taken by packets from the source-to-destination through each hop.

snmpsniff: Linux/Free BSD based tool.

Reads PDUs. It captures SNMP packets going across the segment and stores them for later analysis.

• Similar to tcpdump

Name Operating System netstat UNIX Displays the contents of various network-related data structures arp UNIX, Windows rarp 9x/00/NT Displays and modifies the Internet-to-Ethernet address translation tables

routing delays

Traces route to a destination with

Table 9.3 Route-Monitoring Tools

SNMP Command Tools

- snmptest
- snmpget: This command communicates with a network object using the SNMP gef-reguest message

traceroute

tracert

UNIX

Windows

- snmpgetnext: This command is especially useful to get the values of variables in an aggregate object
- snmpset: sends the SNMP set-request message and receives the get-response command.
- snmptrap
- snmpwalk
- snmpnetstat: Useful for finding status of network connections

MRTG is a **tool** that **monitors traffic load** on network links, It generates a live **visual representation** of traffic data by reading the SNMP traffic counters on routers and creates **graphs** that are embedded into Web pages.

Differences between SNMP versions:

SNMP v1	SNMP v2c	SNMP v3
Easy to set up. Only requires a plain text community string to authenticate packets	Identical to version 1	Setup is more complex. Does not use community strings but users with authentication and encryption.
Supports only 32 bit counters	Support for 64 bit counters	Adds security to the 64 bit counters.
Packet Types: Get-Request Get-Next-Request Set Request Get Response	Packet Types: Get-Request Get-Bulk-Request Get-Next-Request Set Request Inform-Response SNMP v2 Trap	The basic functions of v3 are from v1 and v2. v3 has a new SNMP message format
Anybody with access to the network will be able to see the community string in plaintext	Improved error handling Improved SET commands	Adds both encryption and authentication, to the SNMP message.