

IT230 Summary week 6 to 14

IT230 Final Summary From week6 to Week14

Chapter 6

Server-side Programming

• The combination of

– HTML

– JavaScript

– DOM

is sometimes referred to as Dynamic HTML (DHTML)

• Web pages that include scripting are often called dynamic pages (vs. static)

• Similarly, web server response can be static or dynamic

– Static: HTML document is retrieved from the file system and returned to

the client

– Dynamic: HTML document is generated by a program in response to an

HTTP request

• Java servlets are one technology for producing dynamic server responses

– Servlet is a class instantiated by the server to produce a dynamic response

Session

• Many interactive Web sites spread user data entry out over several pages:

– Ex: add items to cart, enter shipping information, enter billing information

• Problem: how does the server know which users generated which HTTP

requests?

– Cannot rely on standard HTTP headers to identify a use

IT230 Final Summary From week6 to Week14

• Session attribute methods:

– setAttribute(String name, Object value): creates a session attribute with

the given name and value

– Object getAttribute(String name): returns the value of the session

attribute named name, or returns null if this session does not have an

attribute with this name

• By default, each session expires if a server-determined length of time elapses

between a session’s HTTP requests

– Server destroys the corresponding session object

• Servlet code can:

– Terminate a session by calling invalidate() method on session object

– Set the expiration time-out duration (secs) by calling setMaxInactiveInterval(int)

Cookies

• A cookie is a name/value pair in the Set-Cookie header field of an HTTP response

• Most (not all) clients will:

– Store each cookie received in its file system

– Send each cookie back to the server that sent it as part of the Cookie

header field of subsequent HTTP requests

IT230 Final Summary From week6 to Week14

• Servlets can set cookies explicitly

– Cookie class used to represent cookies

– request.getCookies() returns an array of Cookie instances representing

cookie data in HTTP request

– response.addCookie(Cookie) adds a cookie to the HTTP response

Cookies- Privacy issues

• Due to privacy concerns, many users block cookies

– Blocking may be fine-tuned. Ex: Mozilla allows

• Blocking of third-party cookies

• Blocking based on on-line privacy policy

• Alternative to cookies for maintaining session: URL rewriting

IT230 Final Summary From week6 to Week14

Chapter 7

An XML document is one that follows certain syntax rules (most of which we followed

for XHTML)

XML Syntax

• An XML document consists of

 – Markup

• Tags, which begin with < and end with >

• References, which begin with & and end with ;

 – Character, e.g.

 – Entity, e.g. <

IT230 Final Summary From week6 to Week14

 » The entities lt, gt, amp, apos, and quot are recognized in every XML document.

 » Other XHTML entities, such as nbsp, are only recognized in other XML documents

 if they are defined in the DTD

 – Character data: everything not markup

• Comments – Begin with <!-- – End --> – Must not contain –

• CDATA section – Special element the entire content of which is interpreted as

character data, even if it appears to be markup – Begins with <![CDATA[– Ends with]]>

(illegal except when ending CDATA)

• < and & must be represented by references except

 – When beginning markup

 – Within comments

 – Within CDATA sections

• Element tags and elements – Three types

• Start, e.g. <message>

• End, e.g. </message>

• Empty element, e.g.
 – Start and end tags must properly nest – Corresponding

pair of start and end element tags plus everything in between them defines an element

 – Character data may only appear within an element

• Start and empty-element tags may contain attribute specifications separated by white

space

 – quoted value must not contain <, can contain & only if used as start of reference

 – quoted value must begin and end with matching quote characters (‘ or “)

• Element and attribute names are case sensitive

• XML white space characters are space, carriage return, line feed, and tab

XML Documents

• A well-formed XML document

 – follows the XML syntax rules and

 – has a single root element

IT230 Final Summary From week6 to Week14

• Well-formed documents have a tree structure

• Many XML parsers (software for reading/writing XML documents) use tree

representation internally

• An XML document is written according to an XML vocabulary that defines

 – Recognized element and attribute names

 – Allowable element content

 – Semantics of elements and attributes

• XHTML is one widely-used XML vocabulary

• Another example: RSS (rich site summary)

• Valid names and content for an XML vocabulary can be specified using

 – Natural language

 – XML DTDs (Chapter 2)

 – XML Schema (Chapter 9)

IT230 Final Summary From week6 to Week14

• If DTD is used, then XML document can include a document type declaration:

• Two types of XML parsers:

– Validating • Requires document type declaration • Generates error if document does not

– Conform with DTD and

– Meet XML validity constraints

» Example: every attribute value of type ID must be unique within the document

– Non-validating • Checks for well-formedness • Can ignore external DTD

• Good practice to begin XML documents with an XML declaration

 – Minimal example:

 – If included, < must be very first character of the document

 – To override default UTF-8/UTF-16 character encoding, include encoding

 declaration following version:

Java-based DOM

• Java DOM API defined by org.w3c.dom package

• Semantically similar to JavaScript DOM API, but many small syntactic differences

– Nodes of DOM tree belong to classes such as Node, Document, Element, Text

IT230 Final Summary From week6 to Week14

– Non-method properties accessed via methods • Ex: parentNode accessed by calling

getParentNode()

Methods such as getElementsByTagName() return instance of NodeList

– getLength() method returns # of items

– item() method returns an item

Example

Convert tree to XML?

Answer

<bookstore>

 <book category="c">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

</bookstore>

IT230 Final Summary From week6 to Week14

Chapter8

Why JSP?

• Servlet/CGI approach: server-side code is a program with HTML embedded

• Java Server Pages (and PHP/ASP) approach: serverside “code” is a document with

program embedded – Supports cleaner separation of program logic from

presentation – Facilitates division of labor between developers and designers

• Used html as root element – Can use HTML-generating tools, such as Mozilla

Composer, to create the HTML portions of the document – JSP can generate other XML

document types as well

• JSP elements

– directive.page: typical use to set HTTP response header field, as shown (default is

text/xml)

– output: similar to XSLT output element (controls XML and document type

declarations)

• Template data: Like XSLT, this is the HTML and character data portion of the document

• Scriptlet: Java code embedded in document

 – While often used in older (non-XML) JSP pages, we will avoid scriptlet use

 – One use (shown here) is to add comments that will not be output to the generated page

JSP and Servlets

• A JSP-generated servlet has a _jspService() method rather than doGet()

or doPost()

– This method begins by automatically creating a number of implicit object variables

that can be accessed by scriptlets

IT230 Final Summary From week6 to Week14

Scriptlets can be written to use the implicit Java objects:

• We will avoid this because:

 – It defeats the separation purpose of JSP

 – We can incorporate Java more cleanly using JavaBeans technology and tag libraries

JSP Expression Language (EL)

• ${visits+1} is an example of an EL expression embedded in a JSP document

– ${…} is the syntax used in JSP documents to mark the contained string as an EL

expression

– An EL expression can occur • In template data: evaluates to Java String • As (part of)

the value of certain JSP attributes: evaluates to data type that depends on context

• EL literals:

– true, false

– decimal integer, floating point, scientificnotation numeric literals

– strings (single- or double-quoted)

– null

• EL variable names: like Java

– Can contain letters, digits, _ , and $

– Must not begin with a digit

– Must not be reserved:

• EL automatic type conversion

– Conversion for + is like other binary arithmetic operators (+ does not string

represent concatenation)

– Otherwise similar to JavaScript

IT230 Final Summary From week6 to Week14

• EL provides a number of implicit objects

• Most of these objects are related to but not the same as the JSP implicit objects

– JSP implicit objects cannot be accessed directly by name in an EL expression, but can

be accessed indirectly as properties of one of the EL implicit objects

• Reference to non-implicit variable is resolved by looking for an EL scoped variable in

the order: – page – request – session – application

• If not found, value is null

• If found, value is Object – JSP automatically casts this value as needed

• All EL implicit objects except pageContext implement Java Map interface

• In EL, can access Map using array or object notation:

– Servlet: request.getParameter(“p1”)

– EL:

 param[‘p1’]

 or

 param.p1

IT230 Final Summary From week6 to Week14

• Function call

– Function name followed by parenthesized, comma-separated list of EL expression

arguments

– Tag libraries define all functions

– Function names usually include a namespace prefix associated with the tag library

MVC

• Many web apps are based on the Model View-Controller (MVC) architecture pattern

IT230 Final Summary From week6 to Week14

• How does the controller know which component to forward to?

– getPathInfo() value of URL’s can be used

– Example:

• JSP include action (not the same as the include directive!)

• Adding parameters to the request object seen by an included component:

Ch17-18 JDBC

DBC provides
A standard library for accessing relational databases. By using the JDBC API, you can
access a wide variety of SQL databases with exactly the same Java syntax.

It is important to note that although the JDBC API standardizes the approach for
connecting to databases, the syntax for sending queries and committing transactions,
and the data structure representing the result, JDBC does not attempt to standardize the
SQL syntax. So, you can use any SQL extensions your database vendor supports.
However, since most queries follow standard SQL syntax, using JDBC lets you change
database hosts, ports, and even database vendors with minimal changes to your code.

Seven Steps for Database Access
– Load the JDBC driver

IT230 Final Summary From week6 to Week14

– Define the connection URL – Establish the connection

– Create a Statement object
– Execute a query or update

IT230 Final Summary From week6 to Week14

Creating tables

IT230 Final Summary From week6 to Week14

– Process the result set

– Close the statement and connection

IT230 Final Summary From week6 to Week14

Advantage of Prepared Statements
Performance:
A prepared statement does not always execute faster than an ordinary SQL statement.
The performance improvement can depend on the particular SQL command you are
executing.

Security:
We recommend that you always use a prepared statement or stored procedure to
update database values when accepting input from a user through an HTML form to
avoid SQL injection attack. This approach is strongly recommended over the approach of
building an SQL statement by concatenating strings from the user input values.

Creating Callable Statements
With a Callable Statement, you can execute a stored procedure or function in a
database. For example, in an Oracle database, you can write a procedure or function in
PL/SQL and store it in the database along with the tables. Then, you can create a
connection to the database and execute the stored procedure or function through a
Callable Statement.

Advantage Of Callable Statements
• A stored procedure has many advantages. For instance, syntax errors are caught at
compile time instead of at runtime;
• the database procedure may run much faster than a regular SQL query; and the
programmer only needs to know about the input and output parameters, not the table
structure.
• coding of the stored procedure may be simpler in the database language than in the
Java programming language because access to native database capabilities (sequences,
triggers, multiple cursors) is possible.

disadvantage Of Callable Statements
One disadvantage of a stored procedure is that you may need to learn a new database-
specific language (note, however, that Oracle8i Database and later support stored
procedures written in the Java programming language).

A second disadvantage is that the business logic of the stored procedure executes on the
database server instead of on the client machine or Web server.

Using Database Transactions
When a database is updated, by default the changes are permanently written (or
committed) to the database. However, this default behavior can be programmatically

IT230 Final Summary From week6 to Week14

turned off. If autocommitting is turned off and a problem occurs with the updates, then
each change to the database can be backed out (or rolled back to the original values). If
the updates execute successfully, then the changes can later be permanently committed
to the database. This approach is known as transaction management.

The default for a database connection is autocommit; each executed statement is
automatically committed to the database. Thus, for transaction management you first
need to turn off autocommit for the connection by calling setAutoCommit(false)

Ch2-3-4-5-6-7 PHP

 كله مهم – يجي منه

 T/F

 MCQ

 Output

 Code

 Essay

 php extraمراجعات كلهم و 21-21-21شرح ويك مهم تشوفوا

5 PHP-Ch4

DESIGN PATTERNS
When designing software, certain programming patterns repeat themselves. Some of
these have been addressed by the software design community and have been given
accepted general solutions. These repeating problems are called design patterns.

Strategy Pattern

• The strategy pattern is typically used when your programmer’s algorithm should be
interchangeable with different variations of the algorithm. For example, if you have
code that creates an image, under certain circumstances, you might want to create
JPEGs and under other circumstances, you might want to create GIF files.

• The strategy pattern is usually implemented by declaring an abstract base class
with an algorithm method, which is then implemented by inheriting concrete
classes. At some point in the code, it is decided what concrete strategy is relevant;
it would then be instantiated and used wherever relevant.

IT230 Final Summary From week6 to Week14

Singleton Pattern

• The singleton pattern is probably one of the best-known design patterns. You have
probably encountered many situations where you have an object that handles
some centralized operation in your application, such as a logger object. In such
cases, it is usually preferred for only one such application-wide instance to exist and
for all application code to have the ability to access it.

• Specifically, in a logger object, you would want every place in the application that
wants to print something to the log to have access to it, and let the centralized
logging mechanism handle the filtering of log messages according to log level
settings. For this kind of situation, the singleton pattern exists.

Factory Pattern

• Polymorphism and the use of base class is really the center of OOP. However, at
some stage, a concrete instance of the base class’s subclasses must be created. This
is usually done using the factory pattern. A Factory class has a static method that
receives some input and, according to that input, it decides what class instance to
create (usually a subclass).

• Say that on your web site, different kinds of users can log in. Some are guests, some
are regular customers, and others are administrators. In a common scenario, you
would have a base class User and have three subclasses: GuestUser, CustomerUser,
and AdminUser. Likely User and its subclasses would contain methods to retrieve
information about the user (for example, permissions on what they can access on
the web site and their personal preferences).

• The best way for you to write your web application is to use the base class User as
much as possible, so that the code would be generic and that it would be easy to
add additional kinds of users when the need arises.

Observer Pattern

• The observer pattern allows for objects to register on certain events and/or data,
and when such an event or change in data occurs, it is automatically notified. In this
way, you could develop the product item to be an observer on the currency
exchange rate, and before printing out the list of items, you could trigger an event
that updates all the registered objects with the correct rate. Doing so gives the
objects a chance to update themselves and take the new data into account in their
display() method

IT230 Final Summary From week6 to Week14

• MySQL Strengths and Weaknesses

– Strength: Great Market Penetration

– Strength: Easy to Get Started

– Strength: Open-Source License for Most Users

– Strength: Fast

– Weakness: Commercial License for Commercial Redistribution

– Strength: Reasonable Scalability

Buffered Versus Unbuffered Queries

Buffered Queries UnBuffered Quesies

• Buffered queries will retrieve the
query results and store them in
memory on the client side, and
subsequent calls to get rows will
simply spool through local memory.

• Buffered queries have the advantage
that you can seek in them, which
means that you can move the
“current row” pointer around in the
result set freely because it is all in the
client. Their disadvantage is that extra
memory is required to store the result
set, which could be very large, and
that the PHP function used to run the
query does not return until all the
results have been retrieved

• Unbuffered queries , on the other
hand, limit you to a strict sequential
access of the results but do not
require any extra memory for storing
the entire result set. You can start
fetching and processing or displaying
rows as soon as the MySQL server
starts returning them. When using an
unbuffered result set, you have to
retrieve all rows with
mysqli_fetch_row or close the result
set with mysqli_free_result before
sending any other command to the
server.

• TYPES OF ERRORS
– Programming Errors

• Syntax/Parse Errors
Syntax errors and other parse errors are caught when a file is compiled, before
PHP starts executing it at all

IT230 Final Summary From week6 to Week14

• Eval
All syntax or parse errors are caught during compilation, except errors in code executed
with eval(). In the case of eval, the code is compiled during the execution of the script.

• Include / Require: If your script includes another file that has a parse error,
compilation will stop at the parse error. Code and declarations preceding the parse error
are compiled, and those following the error are discarded.

- Undefined Symbols:
• When PHP executes, it may encounter names of variables, functions, and so on that
it does not know. Because PHP is a loosely typed interpreted language, it does not
have complete knowledge about all symbol names, function names, and so on during
compilation.

1-Variables and Constants
Variables and constants are not dramatic, and they go by with just a notice.
2-Array Indexes
3-Functions and Classes
Although PHP keeps executing after running across an undefined variable or
constant, it aborts whenever it encounters an undefined function or class

• Logical Errors
• A more subtle type of programming error is a logical error , errors that are in the
structure and logic of the code rather than just the syntax. The best ways to find logical
errors is testing combined with code reviews.

– Portability Errors

•Operating System Differences
•PHP Configuration Differences
•SAPI Differences

– Runtime Errors
 –PHP Errors

• E_ERROR: This is a fatal, unrecoverable error. Examples are out-of-memory
errors, uncaught exceptions, or class redeclarations
• E_WARNING: This is the most common type of error. It normally signals that
something you tried doing went wrong. Typical examples are missing function
parameters, a database you could not connect to, or division by zero.
• Error Reporting Several php.ini configuration settings control which errors
should be displayed and how.

