

Assignment NO. 1 week1-week4

Student Full Name:	
Student ID:	·
CRN No:	

Branch: ______

STATISTICS	Day: Monday
(STAT-101)	Date: 10.10. 2016

<u>Total Points</u>	
True/False	/6
MCQ	/6
Short Answer	/18

Total ____/30

Answer all the Questions on the same question paper.

Section-I

State whether the following statements are True or False. (6 marks, 1 Mark Each)

- The outliers are the values that lie very far away from the vast majority of the other values.
 TRUE
- Systematic Sampling is Sampling in which data is obtained by selecting every kth object.
 TRUE
- 3. If the mode \neq median \neq mean, the distribution will be symmetric. FALSE
- 4. The value of the mean is not affected by one or more outliers. FALSE
- 5. The second quartile value is equal to the median. TRUE
- 6. A scatter diagram is a convenient way to display graphically the relationship between two variables.TRUE

Section-II

(Multiple Choice Questions)

(6 marks, 1 Mark Each)

- 1- Statistics is the science of
 - a) Planning studies and experiments
 - b) Interpreting the data
 - c) Drawing conclusion on the basis of data
 - d) All the above
- 2. The relative frequency of a class is computed by
 - a) Dividing the midpoint of the class by the sample size.
 - b) Dividing the frequency of the class by the midpoint.
 - c) Dividing the sample size by the frequency of the class.
 - d) Dividing the frequency of the class by the sample size.

- 3. The difference between two consecutive lower class limit (or two consecutive lower class boundaries) in a frequency distribution is called
 - a) Class boundary
 - b) Class mid-point
 - c) Class width
 - d) None
- 4. A distribution of data that is the left half of its histogram is roughly a mirror image of its right half called
 - a) Left skewed
 - b) Right skewed
 - c) Symmetric
 - d) None
- 5. The standard deviation for the sample of data: 22, 26, 22 and 24 is
 - a) 1.915
 - b) 1.942
 - c) 1.987
 - d) 2.011
- 6. The three quartiles are $Q_1 = 13.0$, $Q_2 = 14.0$ and $Q_3 = 15.5$, the inter quartile range
 - a) 0.5
 - b) 1.0
 - c) 1.5
 - d) 2.5

Section –III

Answer the following Essay Type Questions

(18 marks, 3 Mark Each)

1. The marks of a sample of 20 in a statistics test that had a maximum possible marks 100 are given below:

96, 90, 82, 40, 47, 49, 55, 56, 65, 66, 66, 71, 73, 75, 75, 78, 75, 78, 80, 81 Find the mean, mode, median and variance.

Solution : Mean = $(\sum x)/n = 69.9$

Mode =75 (75 appear maximum number of time in the given data set) Median = (73 + 75)/2 = 74 (Since, the number of observation is even. Therefore median will be average of 10th and 11th term after arranging the observations in ascending or descending order)

Variance = $s^2 = \frac{\sum (x - (x_{bar}))^2}{n-1} = 210.5$

2. Construct the frequency distribution and cumulative relative frequency table for the following data with 6 classes:
60, 90, 76, 81,59, 40, 48, 61, 57, 78, 86, 65, 63, 54, 68, 93, 71, 78, 79, 67,75, 87, 76, 74, 86, 57, 62, 95, 80, 70.
Solution: Number of Classes = K = 6

Minimum value =40
Maximum value = 95
Range= Maximum value – minimum value= 95-40= 55
Class width= Range/k = 9.17≅ 10

Class interval	Frequency	Relative frequency	Cumulative relative frequency
40-49	2	0.07	0.07
50- 59	4	0.13	0. 20
60- 69	7	0.23	0.43
70- 79	9	0.3	0.73
80-89	5	0.17	0.90
90-99	3	0.1	1.00

3. Calculate the arithmetic mean of the marks from the following table: Marks No. of students

Marks	No. of
0 - 10	12
10-20	18
20-30	27
30-40	20
40- 50	17
50-60	16

Solution:

Marks	No. of students (f)	Mid value (x)	f.x
0 - 10	12	5	60
10-20	18	15	270
20- 30	27	25	675
30-40	20	35	700
40- 50	17	45	765
50- 60	16	55	880
Total	110		3350

Arithmetic mean =
$$\bar{x} = \frac{\sum f.x}{\sum f} = \frac{3350}{110} = 30.5$$

4. Construct a stem-and Leaf of the following data; 73, 81, 75, 71, 75, 65, 78, 40, 66, 80, 90, 82, 75, 55, 66. 44, 33, 12, 27, 42.

Solution:

Steam	Leaf
1	2
2	7
3	3
4	0 2 4
5	5
6	5 6 6
7	1 3 5 5 5 8
8	0 1 2
9	0

5. An analysis of monthly wages paid to the worker in two firm A and B belong to the Same industry gives the following results:

	Firm A	Firm B	
Number of workers	500	600	
Average monthly wage	SR. 186.00	SR. 175.00	
Variance of distribution of wages	81	100	
In which firm, A or B is there greater variability in individual wages?			
Solution: Variance of distribution of wages in firm A: $\sigma_A^2 = 81 \Rightarrow \sigma_A = \sqrt{81} = 9$			
Average monthly wages workers for firm $A = \mu_A = SR$. 186			

Variance of distribution of wages in firm B: $\sigma_B^2 = 100 \Rightarrow \sigma_B = \sqrt{100} = 10$ Average monthly wages workers for firm B = μ_B = SR. 175

Coefficient of variation of wage for form A = $\frac{\sigma_A}{\mu A}$. 100 % = 4.84 % Coefficient of variation of wage for form B = $\frac{\sigma_B}{\mu_B}$. 100 % = 5.71 %

Since, Coefficient of variation for form B is greater than coefficient of variation for firm A. So, firm B has greater variability in industrial wages.

6. Construct histogram of the following frequency table

Frequency Tables

Hours of	Fraguanay
Sleep	Frequency
3 - 4 hrs	1
4 - 5 hrs	3
5 - 6 hrs	6
6 - 7 hrs	14
7 - 8 hrs	16
8 - 9 hrs	5
9 - 10 hrs	3
10 - 11 hrs	2

Answer:

