Ministry of Higher Education Kingdom of Saudi Arabia

CSTS SEU, KSA

Linear Algebra (Math 251) Level IV, Assignment 4 (Fall, 2016)

1. State whether the following statements are true or false: [6]

(a) If $T: V \to W$ is a one to one linear transformation, then $ker(T) = \{0\}.$

 (a) True

(b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a map given by $T(x, y) = (x + y, y - 1)$, then T is linear.

 (b) False

(c) Every square matrix can be decomposed into LU-decomposition.

 (c) False

(d) If A is $m \times n$ matrix, then the eigen values of A^TA can not be negative.

 (d) True

(e) The following L.P.P has an unbounded feasible region.

$$
\min z = x - y
$$

subject to $4x - 3y \ge 0$
 $x + y \le 10$
 $x \ge 0, y \ge 0.$

 (e) False

(f) No L.P.P with an unbounded feasible region has a solution.

 (f) False

-
- 2. Select one of the alternatives from the following questions as your answer. [6]
	- (a) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator given by $T(x, y) = (2x y, -4x + 2y)$, then which of the following vector is in $ker(T)$?
		- A. (1, 4)
		- B. (2, 1)
		- C. $(1, 1/2)$
		- D. $(1/2, 1)$
	- (b) If $T: W \to V$ be a linear transformation, then $ker(T)$ and $range(T)$ are subspaces of vector space(s)
		- A. *V*.
		- B. W.
		- C. W and V respectively.
		- D. *V* and *W* respectively.
	- (c) Which of the following sets of eigenvalues have a dominant eigenvalue:
		- A. $\{8, -7, -6, 8\}$ B. $\{-5, -2, 2, 4\}$
		- C. $\{-3, -2, -1, , 0, 1, 2, 3\}$
		- D. None of the above
			- $\begin{bmatrix} 4 & 0 & 0 \end{bmatrix}$ 1

(d) If $B = \begin{bmatrix} 0 & 9 & 0 \\ 0 & 0 & 10 \end{bmatrix}$ 0 0 16 be a matrix where $B = A^TA$, then the singular values of A

- are
- A. {4, 9, 0}
- B. {0, 9, 16}
- C. $\{4,9,16\}$
- D. {2, 3, 4}
- (e) In linear programming, objective function and objective constraints are
	- A. solved.
	- B. quadratic.
	- C. adjacent.
	- D. linear.
- (f) The feasible region
	- A. is defined by the objective function.
	- B. is an area bounded by the collective constraints and represents all permissible combinations of the decision variables.
	- C. represents all values of each constraint.
	- D. may range over all positive or negative values of only one decision variable.

3. Consider the basis $S = \{v_1, v_2\}$ for \mathbb{R}^2 , where $v_1 = \{1, 1\}$ and $v_2 = \{1, 0\}$ and let [4] $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator for which $T(v_1) = (1, 2)$, and $T(v_2) = (3, 0)$. Find a formula for $T(x_1, x_2)$ and use it to find $T(2, -4)$.

Solution: Take any element $(x_1, x_2) \in \mathbb{R}^2$, so we can write:

$$
(x_1, x_2) = c_1v_1 + c_2v_2
$$

\n
$$
= c_1(1, 1) + c_2(1, 0) = (c_1 + c_2, c_1)
$$

\nOn simplyfying, we get
\n
$$
c_1 = x_2, \quad c_2 = x_1 - x_2
$$

\nAgain, $(x_1, x_2) = c_1v_1 + c_2v_2$
\nSince *T* is linear, so
\n
$$
T(x_1, x_2) = c_1T(v_1) + c_2T(v_2)
$$

\n
$$
= c_1(1, 2) + c_2(3, 0)
$$

\n
$$
= (c_1, 2c_1) + (3c_2, 0)
$$

\n
$$
= (c_1 + 3c_2, 2c_1)
$$

On simplyfying, we get

$$
= (3x1 - 2x2, 2x2)
$$

$$
T(x1, x2) = (3x1 - 2x2, 2x2).
$$

Which is the required formula.

Now, $T(2,-4) = (6+8,-8) = (14,-8).$

4. Check whether the map $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (xy, x)$ is linear or not. [3]

Solution: Let $v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$, so $v_1 + v_2 = (x_1 + x_2, y_1 + y_2)$.

$$
T(v_1) = T(x_1, y_1) = (x_1y_1, x_1)
$$

\n
$$
T(v_2) = T(x_2, y_2) = (x_2y_2, x_2)
$$

\n
$$
T(v_1) + T(v_2) = (x_1y_1 + x_2y_2, x_1 + x_2)
$$

\n
$$
T(v_1 + v_2) = T(x_1 + x_2, y_1 + y_2) = ((x_1 + x_2)(y_1 + y_2), x_1 + x_2)
$$

\n
$$
= (x_1y_1 + x_2y_2 + x_1y_2 + x_2y_1, x_1 + x_2)
$$

\n
$$
\neq T(v_1) + T(v_2)
$$

\n
$$
T(v_1 + v_2) \neq T(v_1) + T(v_2)
$$

Therefore T is not linear.

5. Find an *LU*-decomposition of matrix $A = \begin{bmatrix} 5 & -1 \\ 1 & 1 \end{bmatrix}$. $[4]$ -1 -1 1 .

Solution: We know that "Every square matrix can be decomposed into LU form where L is a unit lower triangular matrix and U is the upper triangular matrix provided that all the principal minors are non zero." Since

$$
A = LU
$$

\n
$$
\begin{bmatrix} 5 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_1 & 1 \end{bmatrix} \begin{bmatrix} u_1 & u_2 \\ 0 & u_3 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} u_1 & u_2 \\ l_1u_1 & l_1u_2 + u_3 \end{bmatrix}
$$

Two matrices are equal only when the corresponding elements are equal. So, we have $u_1 = 5$, $u_2 = -1$, $l_1u_1 = -1$, $l_1u_2 + u_3 = -1$ Therefore we have $l_1 = -\frac{1}{5}$ $\frac{1}{5}$, $u_3 = -\frac{6}{5}$ 5 .

Hence,
$$
L = \begin{bmatrix} 1 & 5 \\ -\frac{1}{5} & 1 \end{bmatrix}
$$
 and $U = \begin{bmatrix} 5 & -1 \\ 0 & -\frac{6}{5} \end{bmatrix}$.

which is the required LU decomposition.

6. Find the singular values of $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. [3]

Solution: The first step is to find the eigenvalues of the matrix

$$
A^T A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}
$$

The characteristic polynomial of A^TA is

$$
\lambda^2 - 10\lambda + 9 = (\lambda - 9)(\lambda - 1)
$$

so the eigenvalues of A^TA are 9 and 1 and the singular values of A in order of decreasing size are $\sigma_1 =$ µu $\overline{\lambda_1} = \sqrt{9} = 3$, $\sigma_2 =$ $^{\perp}$ $\lambda_2 = \sqrt{1} = 1.$

7. Solve the following LPP by graphical method: [4]

$$
\max z = 13x_1 + 11x_2 \quad \text{subject to :}
$$
\n
$$
4x_1 + 5x_2 \le 1500
$$
\n
$$
5x_1 + 3x_2 \le 1575
$$
\n
$$
x_1 + 2x_2 \le 420
$$
\n
$$
x_1, x_2 \ge 0.
$$

Solution: Graph the constraints as lines and find the feasible region.

At the corner point $d(270, 75)$ we get the maximum value of $z = 4335$.