1. The eigenvalues of the following Matrix are:

$$\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

- a) 2,3
- b) -1,-2,-3, c) 3

d) 1, 2, 3

2. The characteristic equations of the following matrix:

$$\begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$

- a) $\lambda^2 8\lambda + 8 = 0$ b) $\lambda^2 8\lambda + 16 = 0$
- c) $\lambda^2 2\lambda + 8 = 0$ d) $\lambda^2 + 8\lambda 16 = 0$

3. The matrix P that diagonalizes to A is,

$$A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$$

- a) $P = \begin{bmatrix} \frac{1}{3} & 1 \\ 1 & 0 \end{bmatrix}$ b) $P = \begin{bmatrix} \frac{1}{3} & 0 \\ 1 & 1 \end{bmatrix}$ c) $P = \begin{bmatrix} \frac{1}{3} & 1 \\ 1 & 1 \end{bmatrix}$ d) $P = \begin{bmatrix} \frac{1}{3} & 1 \\ 0 & 1 \end{bmatrix}$

4. If u= (I, 2i, 3) and V= (4, -2i, 1+i) then u.v is

- a) 1+i
- b) -1-i c) -1+i d) 1-i

5. Solve the system

$$Y1/ = Y1 + 4 Y2$$

 $Y2/ = 2Y1 + 3 Y2$

a) Y1= c1 e^{5X} -2c2 e^{-X} , Y2= c1 e^{5X} + 2c2 e^{-X}

b) $Y1 = c1 e^{-5X} - 2c2e^{-X}$, $Y2 = c1 e^{-5X} + 2c2e^{-X}$

c)
$$Y1 = c1 e^{5X} - 2c2e^{-X}$$
, $Y2 = c1 e^{5X} - 2c2e^{-X}$

d)
$$Y1 = c1 e^{-5X} - 2c2e^{-X}$$
, $Y2 = c1 e^{-5X} - 2c2e^{-X}$

6. Which of the following sets of vectors are orthogonal with respect to the Euclidean inner product on R2

a-
$$(0,6)$$
, $(7,0)$ **b-** $(3,4)$, $(2,6)$ **c-** $(6,9)$, $(5,2)$ **d-** $(0,0)$, $(0,6)$

$$b-(3,4),(2,6)$$

$$c-(6,9),(5,2)$$

7. if $\|\mathbf{u}\| = \sqrt{30}$, $\|\mathbf{v}\| = \sqrt{18}$, and $\{\mathbf{u}, \mathbf{v}\} = -9$ so $\cos \theta$ equal

$$-\frac{3}{2\sqrt{15}}$$

8. Find the cosine of the angle, θ , between $p=x-x^2$, and $q=2+2x+2x^2$ a-0 b-3 c-6 d-9

9. Let <u, v> be the Euclidean inner product on R2, and let $\overrightarrow{u} = (4, 3), \overrightarrow{v} = (3, 5)$

then
$$\frac{\left(\stackrel{\rightarrow}{u},\stackrel{\rightarrow}{v}\right)}{is}$$

10.A straight line is

$$a-y=ax+b$$

$$b-a+bx+cx2$$

d-none of the above

11. One of the following matrices is positive definite:

a-
$$\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$

b-
$$\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

b-
$$\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
 c- $\begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$ d- $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

$$\mathbf{d} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

12. If A is a square orthogonal symmetric matrix, then:

$$a- \det(A) = 2$$

b-
$$A^{-1}$$
. $A = A^2$

$$c$$
- $tr(A) > 0$

a- det(A) = 2 **b-** A^{-1} . $A = A^2$ c- tr(A) > 0 d- A is not invertible

13. One of the following matrices is orthogonally diagonalizable:

a-
$$\begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$

b-
$$\begin{bmatrix} 3 & 2 & -4 \\ 2 & 4 & 6 \\ -4 & 6 & -1 \end{bmatrix}$$

$$c-\begin{bmatrix}1&0\\1&0\end{bmatrix}$$

$$d - \begin{bmatrix} 3 & 5 & 6 \\ 7 & -1 & 4 \\ 3 & 5 & 0 \end{bmatrix}$$

14. One of the following quadratic forms is classified as Indefinite:

a-
$$x_1^2 - x_2^2$$

b-
$$x_1^2 + x_2^2$$

c-
$$(x_1 - x_2)^2$$

a-
$$x_1^2 - x_2^2$$
 b- $x_1^2 + x_2^2$ c- $(x_1 - x_2)^2$ d- $-x_1^2 - 3x_2^2$

- Let T be a linear transformation from R^n to R^m and let $\vec{u} = T(\vec{0})$ where $\vec{0}$ is 15. the zero vector in \mathbb{R}^n . Choose the correct statement
- A) \vec{u} is a zero vector in \mathbb{R}^n
- B) \vec{u} is a zero vector in R^m if and only if $n \le m$
- C) \vec{u} is a zero vector in R^m if and only if n = m
- D) \vec{u} is a zero vector in R^m
- Let A be an n ×n matrix of rank m. Any matrix similar to A: **16.**
 - A) may have rank \leq n
 - B) may have rank \geq m
 - C) may have any rank \geq m and \leq n
 - D) must have rank m

17. Determine whether the linear transformation T is one-to-one.

$$T:Rm \rightarrow Rn, n < m.$$

- A) The answer depends upon the value of m n
- B) T is one-to-one
- C) T is not one-to-one
- D) it is impossible to determine whether T is one-to-one
- 18. As indicated in the accompanying figure, let T:R2 → R2 be the linear operator that reflects each point about the y -axis.

- 19. Find the kernel of T. Is T one-to-one?
- A) $ker(T) = \{(0, y) \mid where y \text{ is any real number}\}$; T is one-to-one
- B) $ker(T) = \{(x, 0) \mid where x \text{ is any real number}\}$; T is not one-to-one
- C) $ker(T) = \{0\}$; T is one-to-one
- D) $ker(T) = \{0\}$; T is not one-to-one
- 20. Find the domain and codomain of T2 o T1, and find (T2 o T1)(x1, x2)

$$T1(x, y) = (2x, 4y), T2(x, y) = (x - y, x + y)$$

- A) The domain and codomain of T2 \circ T1 are R3, and (T2 \circ T1)(x1, x2) = (2x1 4x2, 2x1 + 4x2)
- B) The domain and codomain of T2 \circ T1 are R2, and (T2 \circ T1)(x1, x2) = (2x1-4x2,2x1+4x2)
- C) The domain and codomain of T2 \circ T1 are R3, and (T2 \circ T1)(x1, x2) = (2x1 2x2, 4x1 + 4x2)
- D) The domain and codomain of T2 \circ T1 are R2, and (T2 \circ T1)(x1, x2) = (2x1 2x2, 4x1 + 4x2)

21. Which of the following sets of eigenvalues have a dominant eigenvalue.

(a)

 $\{-4, -3, 4, 1\}$ **(b)** $\{-3, -1, 0, 2\}$

(c) $\{0, 3, -3, -2\}$

(d) $\{-5, 3, -2, 5\}$

The approximation of the time required to the forward 22. phases of Gauss-Jordan elimination equal:

(a) $2/3n^3$

(b) n^2

(c) $2n^3$

23.

If A is an m \times n matrix, then A and A^TA have the same:

(a) Null space (b) row space

(d) rank

(d) All of them

24.

The singular values of $A = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$

(a) $\{0, 1\}$ (b) $\{2, 5\}$ (c) $\{2, 0\}$

 $\{0,5\}$

25. The point (3,0) satisfy one of the following systems:

 $a)x + y \ge 5$

b) $3x-y \ge 9$

 $x + 2y \ge 3$

 $4x + 5y \le 11$

c) $12x - y \ge 35$

d) $2x + y \ge 6$

 $3x + 4y \le 10$

 $3x - 5y \ge 15$

one of the following system is bounded: 26.

a)
$$y \ge x$$

b)
$$y \le x+3$$

$$y \ge -x$$

$$y \le 4-x$$

c)
$$x \ge 1$$

d)
$$y \le 2x + 3$$

$$y \ge 3$$

$$y \le 6 - x$$

$$y \ge 2$$

- 27. the point at which f = 3x + 5y has the highest value is:
- a) (0,2)
- b) (4,0)
- c) (3,1) **d)** (2,5)
- 4) one of the following triples is the solution to the linear programming

$$\max \ 2x_1 + 3x_2 + 2x_3 \quad \text{subject to} \quad \begin{cases} x_1 + 4x_2 & \leq 4 \\ x_1 - x_2 + 3x_3 \leq 5 \end{cases}, \quad x_1, x_2, x_3 \geq 0$$

- a) (0,1,2)
- b) (4,0,0.5) c) $(4,0,\frac{1}{3})$ d) (1,0,1)
- One of the following is a valid objective function for a linear programming 28. problem:
 - Max (5xy) a)
 - **b**) Min(4x + 3y + (2/3)z)
 - Max $(5x^2 + 6y)$ c)
 - Min((x + y)/z) d)

- 29. The Slack is:
 - a. the difference between the left and right sides of a constraint.
 - b. the amount by which the left side of a < constraint is smaller than the right side.
 - c. the amount by which the left side of a \geq constraint is larger than the right side.
 - d. exist for each variable in a linear programming problem.
- 30. To find the optimal solution to a linear programming problem using the graphical method
 - a. find the feasible point that is the farthest away from the origin.
 - b. find the feasible point that is at the highest location.
 - c. find the feasible point that is closest to the origin.
 - d. None.
- 31. Infeasibility means that the number of solutions to the linear programming models that satisfies all constraints is:
 - a. at least 1.
 - **b. 0.**
 - c. an infinite number.
 - d. at least 2.