Najwa Knefati ch7 OS9

DEADLOCKS
In a multiprogramming environment, several processes may compete for a finite number of resources. A process requests resources; if the resources are busy, the process enters a waiting state. Sometimes, a waiting process is never again able to change state, because the resources it has requested are held by other waiting processes. This situation is called a deadlock.
7.1 System Model
· A system consists of a finite number of resources to be distributed among a number of competing processes.
· The resources may be partitioned into several types (or classes).
· Each class consisting of some number of identical instances. CPU cycles, files, and I/0 devices (such as printers and DVD drives) are examples of resource types.
If a process requests an instance of a resource type, the allocation of any instance of the type should satisfy the request or it’s not identical.
· Mutex locks and semaphores are also considered system resources, and they are a common source of deadlock.
Under the normal mode of operation, a process may utilize a resource in only the following sequence:
1. Request. The process requests the resource. If the request cannot be granted immediately (for example, if the resource is being used by another process), then the requesting process must wait until it can acquire the resource.
2. Use. The process can operate on the resource (for example, if the resource is a printer, the process can print on the printer).
3. Release. The process releases the resource.
· The request and release of resources may be system calls.
· Examples are the request () and release () device, open () and close () file, and allocate () and free () memory system calls.
· Wait () and signal () operations on semaphores or through acquire () and release () of a mutex lock.
A system table records whether each resource is free or allocated.
For each resource that is allocated, the table also records the process to which it is allocated.
A set of processes is in a deadlocked state when every process in the set is waiting for an event that can be caused only by another process in the set.
The resources may be either physical resources (for example, printers, tape drives, memory space, and CPU cycles) or logical resources (for example, semaphores, mutex locks, and files).
7.2 Deadlock Characterization
7.2.1 Necessary Conditions
A deadlock situation can arise if the following four conditions hold simultaneously in a system:
1. Mutual exclusion. At least one resource must be held in a nonsharable mode; that is, only one process at a time can use the resource. If another process requests that resource, the requesting process must be delayed until the resource has been released.
2. Hold and wait. A process must be holding at least one resource and waiting to acquire additional resources that are currently being held by other processes.
3. No preemption. Resources cannot be preempted; that is, a resource can be released only voluntarily by the process holding it, after that process has completed its task.
4. Circular wait. A set {P0, P1, ... , P,} of waiting processes must exist such that Po is waiting for a resource held by P,, P1 is waiting for a resource held by P2, ... , P,_, is waiting for a resource held by P,, and Pn is waiting for a resource held by Po.
· All four conditions must hold for a deadlock to occur.
7.2.2 Resource-Allocation Graph
Deadlocks can be described by a system resource-allocation graph.
This graph consists of a set of vertices V and a set of edges E.
· The set of vertices V is partitioned into two different types of nodes:
· P = {P1, P2,…, Pn}, the set of active processes in the system.
· R = {R1, R2,... Rm}, the set consisting of all resource types in the system.
· Request edge: A directed edge from process Pi to resource type Rj is denoted by Pi Rj.
· Assignment edge: A directed edge from resource type Rj to process Pi is denoted by Rj Pi. It signifies that an instance of resource type RJ has been allocated to process Pi.
· We represent each process Pi as a circle and each resource type Rj as a rectangle.
· We represent each such instance as a dot within the rectangle.
Given the definition of a resource-allocation graph, it can be shown that,
· If the graph contains no cycles, then no process in the system is deadlocked.
· If the graph does contain a cycle, then a deadlock may exist.
· Deadlock occurs:
· If the cycle has only a set of resource types, each of which has only a single instance. Each process involved in the cycle is deadlocked.
· In this case, a cycle in the graph is both a necessary and a sufficient condition for the existence of deadlock.

[image:] [image:]

7.3 Methods for Handling Deadlocks
· We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter a deadlocked state.
· We can allow the system to enter a deadlocked state, detect it, and recover.
· We can ignore the problem altogether and pretend that deadlocks never occur in the system.
The third solution is the one used by most operating systems, including Linux and Windows.
To ensure that deadlocks never occur, the system can use either a deadlock prevention or a deadlock-avoidance scheme.
Deadlock prevention provides a set of methods to ensure that at least one of the necessary conditions (Section 7.2.1) cannot hold.
Deadlock avoidance requires that the operating system be given additional information in advance concerning which resources a process will request and use during its lifetime.
· If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a deadlock situation may arise.

7.4 Deadlock Prevention
By ensuring that at least one of these conditions cannot hold, we can prevent the occurrence of a deadlock.
7.4.1 Mutual Exclusion
· The mutual exclusion condition must hold. That is, at least one resource must be non-sharable.
· Read-only files are a good example of a sharable resource.
· Sharable resources do not require mutually exclusive access and thus cannot be involved in a deadlock.
· We cannot prevent deadlocks by denying the mutual-exclusion condition, because some resources are intrinsicallyبجوهرها nonsharable.
· For example, a mutex lock cannot be simultaneously shared by several processes.
7 .4.2 Hold and Wait
To ensure that the hold-and-wait condition never occurs, we must guarantee that, whenever a process requests a resource, it does not hold any other resources.
· One protocol that we can use requires each process to request and be allocated all its resources before it begins execution.
· An alternative protocol allows a process to request resources only when it has none.
· Before it can request any additional resources, it must release all the resources that it is currently allocated.
Both these protocols have two main disadvantages.
· First, resource utilization may be low, since resources may be allocated but unused for a long period.
· Second, starvation is possible. A process that needs several popular resources may have to wait indefinitely, because at least one of the resources that it needs is always allocated to some other process.
7.4.3 No Preemption
To ensure that this condition does not hold, we can use the following protocol.
1-If a process is holding some resources and requests another resource that cannot be immediately allocated to it (that is, the process must wait),
2-Then all resources the process is currently holding are preempted (implicitly released).
3-The preempted resources are added to the list of resources for which the process is waiting.
4-The process will be restarted only when it can regain(تستعيد) its old resources, as well as the new ones that it is requesting.
7 .4.4 Circular Wait
One way to ensure that this condition never holds is to impose a total ordering of all resource types and to require that each process requests resources in an increasing order of enumeration.
· 1- That is, a process can initially request any number of instances of a resource type -say, Ri. After that, the process can request instances of resource type Rj if and only if F (Rj) > F(Ri).
· We define a one-to-one function F: R N, where N is the set of natural numbers.
· For example, if the set of resource types R includes tape drives, disk drives, and printers, then the function F might be defined as follows:
· F(tape drive) = 1 F(disk drive)= 5 F(printer) = 12
· A process that wants to use the tape drive and printer at the same time must first request the tape drive and then request the printer.
· 2- Alternatively, we can require that a process requesting an instance of resource type Rj must have released any resources Ri such that F(Ri) F(Rj). Note also that if several instances of the same resource type are needed, a single request for all of them must be issued.
· [bookmark: _GoBack]If these two protocols are used, then the circular-wait condition cannot hold.
More info look p321
7.5 Deadlock Avoidance
Deadlock-prevention algorithms, prevent deadlocks by limiting how requests can be made.
The limits ensure that at least one of the necessary conditions for deadlock cannot occur.
· Possible side effects are low device utilization and reduced system throughput.
An alternative method for avoiding deadlocks is to require additional information about how resources are to be requested.
· Each request requires that in making this decision the system consider the resources currently available, the resources currently allocated to each process, and the future requests and releases of each process.
· The various algorithms that use this approach differ in the amount and type of information required.
· The simplest and most useful model requires that each process declare the maximum number of resources of each type that it may need.
· A deadlock avoidance algorithm examine the resource-Allocation state.
· The resource-allocation state is defined by the number of available and allocated resources and the maximum demands of the processes.
7.5.1 Safe State
A state is safe if the system can allocate resources to each process (up to its maximum) in some order and still avoid a deadlock.
· More formally, a system is in a safe state only if there exists a safe sequence.

· A sequence of processes <P1, P2, ... , Pn> is a safe sequence for the current allocation state if, for each Pi the resource requests that Pi can still make can be satisfied by the currently available resources plus the resources held by all Pi, with j < i.
· When Pi terminates, Pi+1 can obtain its needed resources, and so on.
· If no such sequence exists, then the system state is said to be unsafe.
· A deadlocked state is an unsafe state.
· As long as the state is safe, the operating system can avoid unsafe (and deadlocked) states.
The idea is simply to ensure that the system will always remain in a safe state.
· Initially, the system is in a safe state.
· Whenever a process requests a resource that is currently available, the system must decide whether the resource can be allocated immediately or whether the process must wait.
7 .5.2 Resource-Allocation-Graph Algorithm
In addition to the request and assignment edges already described, we introduce a new type of edge, called a claim edge.
· Claim edge: indicates that process Pi may request resource Rj at some time in the future.
· This edge resembles a request edge in direction but is represented in the graph by a dashed line.
· When process Pi requests resource Rj, the claim edge Pi Rj is converted to a request edge. Similarly, when a resource Rj is released by Pi, the assignment edge Rj Pi is reconverted to a claim edge PiRj.
· Note that the resources must be claimed a priori in the system.
· That is, before process Pt starts executing, all its claim edges must already appear in the resource-allocation graph.
7.5.3 Banker's Algorithm
Please look at it in the textbook p326

7.6 Deadlock Detection
If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a deadlock situation may occur. In this environment, the system may provide:
• An algorithm that examines the state of the system to determine whether a deadlock has occurred
• An algorithm to recover from the deadlock.
7.6.1 Single Instance of Each Resource Type
If all resources have only a single instance, then we can define a deadlock detection algorithm that uses a variant of the resource-allocation graph, called a wait-for graph.
· We obtain this graph from the resource-allocation graph by removing the resource nodes and collapsing the appropriate edges.
· As before, a deadlock exists in the system if and only if the wait-for graph contains a cycle.
· To detect deadlocks, the system needs to maintain the graph and periodically invoke an algorithm that searches for a cycle in the graph.
· An algorithm requires an order of n2 operations, where n is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type
The wait-for graph scheme is not applicable with multiple instances of each resource type.
We turn to deadlock-detection algorithm that is applicable to such a system.
The algorithm employs several time-varying data structures that are similar to those used in the banker's algorithm:
· Available. A vector of length m indicates the number of available resources of each type.
· Allocation. An n x m matrix defines the number of resources of each type currently allocated to each process.
· Request. An n x m matrix indicates the current request of each process.
· If Request[i](j] equals k, then process Pi is requesting k more instances of resource type Rj.
[image:]
For more info please check out textbook p331-332

7.6.3 Detection-Algorithm Usage
When should we invoke the detection algorithm? The answer depends on two factors:
1. How often is a deadlock likely to occur?
2. How many processes will be affected by deadlock when it happens?
· If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
· Resources allocated to deadlocked processes will be idle until the deadlock can be broken.
· Deadlocks occur only when some process makes a request that cannot be granted immediately.
· Then, we can invoke the deadlock detection algorithm every time a request for allocation cannot be granted immediately.
· In this case, we can identify not only the deadlocked set of processes but also the specific process that "caused" the deadlock.
· Of course, invoking the deadlock-detection algorithm for every resource request will incur considerable overhead in computation time.
· A less expensive alternative is simply to invoke the algorithm at defined interval.
7. 7 Recovery from Deadlock
· One possibility is to inform the operator that a deadlock has occurred and to let the operator deal with the deadlock manually.
· Another possibility is to let the system recover from the deadlock automatically.
There are two options for breaking a deadlock: aborting processes –preempting resources.
7.7.1 Process Termination
To eliminate deadlocks by aborting a process, we use one of two methods.
In both methods, the system reclaims all resources allocated to the terminated processes.
· Abort all deadlocked processes: break the deadlock cycle, but at great expense. The deadlocked processes will lose its partial results of these partial computations (If the process was in the midst of updating a file, terminating it will leave that file in an incorrect state.)
· Abort one process at a time until the deadlock cycle is eliminated. This method incurs considerable overhead, since after each process is aborted, a deadlock-detection algorithm must be invoked to determine whether any processes are still deadlocked.
· Using this method: we must determine which deadlocked process (or processes) should be terminated.
· Many factors may affect which process is chosen, including:
· 1. What the priority of the process is
· 2. How long the process has computed and how much longer the process will compute before completing its designated task
· 3. How many and what types of resources the process has used (for example, whether the resources are simple to preempt)
· 4. How many more resources the process needs in order to complete
· 5. How many processes will need to be terminated
· 6. Whether the process is interactive or batch
7.7.2 Resource Preemption
To eliminate deadlocks using resource preemption, we successively preempt some resources from processes and give these resources to other processes until the deadlock cycle is broken.
Three issues need to be addressed:
1. Selecting a victim. Which resources and which processes are to be preempted? Determine the order of preemption to minimize cost.
2. Rollback. If we preempt a resource from a process, what should be done with that process? We must roll back the process to some safe state and restart it from that state.
In general, it is difficult to determine what a safe state is, the simplest solution is a total rollback: abort the process and then restart it.
3. Starvation. , how can we guarantee that resources will not always be preempted from the same process? We must ensure that a process can be picked as a victim only a (small) finite number of times.
The most common solution is to include the number of rollbacks in the cost factor.

image4.png
1. Let Work and Finish be vectors of length m and n, respectively. Ini-
tialize Work = Available. For i=0, 1, ..., n-1, if Allocation; # 0, then
Finishli] = false. Otherwise, Finish{i) = true.

2. Find an index i such that both
a. Finishli] == false
b. Reguest, < Work

1f no such i exists, go to step 4.
3. Work=Work + Allocation;
Finishi] = true
Gotostep2.
4. If Finish|i] == false for somei,0 < i <n, then thesystem isin a deadlocked
state. Moreover, if Finish|i] == false, then process P\ is deadlocked.

image1.gif

image2.png
R .

A,

Figure 7.2 Resource-allocation graph with a deadiock.

image3.png
Figure 7.1 Resource-allocation graph.

