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Process Concept
A process, which is a program in execution is the unit of work in a modem time-sharing system.
3.1 Process Concept
A batch system executes jobs, whereas a time-shared system has user programs, or tasks.
3.1.1 The Process
· A process is more than the program code, which is sometimes known as the text section.
· It also includes:
· The current activity, represented by program counter and the contents of the processor's registers.
· process stack, which contains temporary data (such as function parameters, return addresses, and local variables)
· Data section, which contains global variables.
· A heap, which is memory that is dynamically allocated during process run time.
· A program is a passive entity not a process, such as a file containing a list of instructions stored on disk (often called an executable file).
· In contrast, a process is an active entity, with a program counter specifying the next instruction to execute and a set of associated resources.
·  A program becomes a process when an executable file is loaded into memory.
· Two common techniques for loading executable files: are double-clicking an icon representing it and entering the name on the command line (as in prog. exe or a. out). Two separate execution sequences.
· A process itself can be an execution environment for other code. EX: JVM(JAVA).
3.1.2 Process State
As a process executes, it changes state.
By the current activity of that process; a process may be in one of the following states: 
· New. The process is being created.
· Running. Instructions are being executed. 
· Waiting. The process is waiting for some event to occur (such as an 1/0  completion or reception of a signal). 
· Ready. The process is waiting to be assigned to a processor. 
· Terminated. The process has finished execution.
Only one process can be running on any processor at any instant. Many processes may be ready and waiting.

3.1.3 Process Control Block
Each process is represented in the OS by a process control block (PCB) - also called a task control block.
A PCB contains many pieces of information associated with a specific process, including these:
• Process state: new, ready, running, waiting, halted, and so on. 
• Program counter. Indicates the address of the next instruction to be executed for this process. 
• CPU registers vary in number and type, They include accumulators, index registers,  stack pointers, and general-purpose registers, plus any condition-code information. Along with the program counter, this state information must be saved when an interrupt occurs, to allow the process to be continued correctly afterward (Figure 3.4). 
• CPU-scheduling information: includes a process priority, pointers to scheduling queues, and any other scheduling parameters. 
• Memory-management information: include such items as the value of the base and limit registers and the page tables, or the segment tables, depending on the memory system used by the operating  system .
• Accounting information: includes the amount of CPU and real time used, time limits, and so on. 
• 110 status information: includes the list of I/O devices allocated to the process, a list of open files, and so on.
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3.1.4 Threads
· A process is a program that performs a single thread of execution.
· This single thread of control allows the process to perform only one task at a time.
· Most modern operating systems allow a process to have multiple threads.
3.2 Process Scheduling
· The objective of multiprogramming is to have some process running at all times, to maximize CPU utilization. 
· The objective of time sharing is to switch the CPU among processes so frequently that users can interact with each program while it is running.
· To meet these objectives, the process scheduler selects an available process (possibly from a set of several available processes) for program execution on the CPU.
3.2.1 Scheduling Queues
· As processes enter the system, they are put into a job queue, which consists of all processes in the system.
· The processes in main memory (ready and waiting to execute) are kept on a linked list called the ready queue.
· A ready-queue header contains pointers to the first and final PCBs in the list.
·  Each PCB includes a pointer field that points to the next PCB in the ready queue.
· The list of processes waiting for a particular I/O device is called a device queue. Each device has its own device queue.

A new process is initially put in the ready queue. It waits there until it is selected for execution, or dispatched. Once the process is allocated the CPU and  is executing_ one of several events could occur: 
• The process could issue an I/O request and then be placed in an I/O queue. 
• The process could create a new child process and wait for the child's termination. 
• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back in the ready queue.
3.2.2 Schedulers
· The selected process by the operating system is carried out by the appropriate scheduler.
· The long-term scheduler, or job scheduler, selects processes from this pool and loads them into memory for execution.
·  The short-term scheduler, or CPU scheduler, selects from among the processes that are ready to execute and allocates the CPU to one of them.

	short-term scheduler
	long-term scheduler

	· Select a new process for the CPU frequently.

· A process may execute for only a few milliseconds before waiting for an I/O request.
	· make the degree of multiprogramming (the number of processes in memory stable , then the average rate of process creation must be equal to the average departure rate of processes leaving the system.
· It is important that the long-term scheduler make a careful selection.

	Often, the short-term scheduler executes at least once every 100 milliseconds. Because of the short time between executions, it’s fast. If it takes 10 milliseconds to decide to execute a process for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used 
(Wasted) simply for scheduling the work.
	The long-term scheduler executes much less frequently; minutes may separate the creation of one new process and the next.

	If all processes are I/O bound, the ready queue will almost always be empty, and the short-term scheduler will have little to do.
	It is important that the long-term scheduler select a good process mix of I/O bound and CPU-bound processes.

	
	On some systems, the long-term scheduler may be absent or minimal. For example, time-sharing systems such as UNIX and Microsoft Windows (no short-term).


· Some operating systems, such as time-sharing systems, may introduce an additional, intermediate level of scheduling. This medium-term scheduler can be advantageous to remove a process from memory .Later, the process can be reintroduced into memory, and its execution can be continued where it left off. This scheme is called swapping.
· I/O-bound process: spends more of its time doing I/O than it spends doing computations.
· A CPU-bound process, in contrast, using more of its time doing computations.
3.3 Operations on Processes
The processes in most systems can execute concurrently, and they may be created and deleted dynamically.
3.3.1 Process Creation
· The creating process is called a parent process, and the new processes are called the children of that process.
· Each of these new processes may in turn create other processes, forming a tree of processes.
· Process identifier (or pid), is an integer number provides a unique value for each process in the system, and it can be used as an index to access various attributes of a process within the kernel.
	The init process (has a pid of 1)
	Serves as the root parent process for all user processes.
***Once the system has booted, the init process can also create various user processes, such as a web or print server, an ssh server, and the like.


	The kthreadd process
	For creating additional processes that perform tasks on behalf of the kernel.

	The sshd process
	For managing clients that connect to the system by using ssh (which is short for secure shell).

	The login process
	For managing clients that directly log onto the system.


IN GENERAL, 
1-when a process creates a child process, that child process will need certain resources (CPU time, memory, files, I/O devices) to accomplish its task. 
2- Resources are obtained directly from the OS, or it may be constrained to a subset of the resources  of the parent process.
3- In addition to supplying resources, the parent process may pass along initialization data (input) to the child process.
· When a process creates a new process, two possibilities for execution exist: 
1. The parent continues to execute concurrently with its children. 
2.  The parent waits until some or all of its children have terminated. 
There are also two address-space possibilities for the new process: 
1.  The child process is a duplicate of the parent process (it has the same program and data as the parent). 
2. The child process has a new program loaded into it.
In UNIX, each process is identified by its process identifier.
· A new process is created by the fork() system call. The new process consists of a copy of the address space of the original process. 
· This mechanism allows the parent process to communicate easily with its child process.
· Both processes (the parent and the child) continue execution at the instruction after the fork(), with one difference: 
· The return code for the fork() is zero for the new (child) process, (nonzero) process identifier to the parent.
· After a fork 0 system call, one of the two processes typically uses the exec () system call to replace the process's memory space with a new program.
· exec () loads a binary file into memory (destroying the memory image of the program containing the exec () system call) and starts its execution.
· The parent can then create more children; or, if it has nothing else to do while the child runs, it can issue a wait () system call to move itself off the ready queue until the termination of the child.
· Because the call to exec () overlays the process's address space with a new program, the call to exec () does not return control unless an error occurs.
The C program we now have two different processes running copies of the same program.
 The only difference is that the value of pid for the child process is zero, while that for the parent is an integer value greater than zero (in fact, it is the actual pid of the child process).
· The child process inherits privileges and scheduling attributes from the parent, as well certain resources, such as open files.
· The child process then overlays its address space with the UNIX command /bin/Is (used to get a directory listing) using the execlp () system call.
· (Execlp () is a version of the exec () system call).
· The parent waits for the child process to complete with the wait () system call.
· When the child process completes (by either implicitly or explicitly invoking exit()), the parent process resumes from the call to wait (), where it completes using the exit() system call.
· Lookp117
3.3.2 Process Termination
· A process terminates when it finishes executing its final statement and asks the operating system to delete it by using the exit () system call.
· The process may return a status value (typically an integer) to its parent process (via the wait() system call).
· All the resources of the process are deallocated by the OS.
· A process can cause the termination of another process via an appropriate system call (for example, TerminateProcess () in Windows).
Note that a parent needs to know the identities of its children if it is to terminate them.
· A parent may terminate the execution of one of its children for a variety of  reasons, such as these: 
• The child has exceeded its usage of some of the resources that it has been allocated. (To determine whether this has occurred, the parent must have a mechanism to inspect the state of its children.) 
• The task assigned to the child is no longer required. 
• The parent is exiting, and the operating system does not allow a child to continue if its parent terminates.
In some systems, if a process terminates, then all its children must also be terminated. This phenomenon, referred to as cascading termination.
[bookmark: _GoBack]In Linux and UNIX systems,
· we can terminate a process by using the exit() system call, providing an exit status as a parameter:
 I* exit with status 1 *I 
                                         exit (l);
exit () may be called either directly (as shown above) or indirectly (by a return statement in main ())
· A parent process may wait for the termination of a child process by using the wait () system call.
· The wait () system call is passed a parameter that allows the parent to obtain the exit status of the child.
· returns the process identifier of the terminated child so that the parent can tell which of its children has terminated: 
pid_t  pid; 
int status; 
pid = wait (&status);
· When a process terminates, its resources are deallocated by the operating system.
· However, its entry in the process table must remain there until the parent calls wait(), because the process table contains the process's exit status.
· A process that has terminated, but whose parent has not yet called wait (), is known as a zombie process.
· All processes transition to this state when they terminate, but generally they exist as zombies only briefly.
· Once the parent calls wait (), the process identifier of the zombie process and its entry in the process table are released.
· If a parent did not invoke wait () and instead terminated, thereby leaving its child processes as orphans. 
1-Linux and UNIX address this scenario by assigning the init process as the new parent to orphan processes.
2-The init process periodically invokes wait (), thereby allowing the exit status of any orphaned process to be collected and releasing the orphan's process identifier and process-table entry.

3.2.3 Context Switch
· On general-purpose system: interrupts cause the operating system to change a CPU from its current task and to run a kernel routine.
· When an interrupt occurs, the system needs to save the current context of the process running on the CPU so that it can restore that context when its processing is done, essentially suspending the process and then resuming it.
· The context is represented in the PCB of the process.
· It includes the value of the CPU registers, the process state and memory-management information.
· We perform a state save of the current state of the CPU, be it in kernel or user mode, and then a state restore to resume operations.
· Switching the CPU to another process requires performing a state save of the current process and a state restore of a different process. This task is known as a context switch.
3.4 interprocess Communication
· Processes executing concurrently in the operating system may be either independent processes or cooperating (affect or be affected by the other processes) processes.
· Cooperating processes require an interprocess communication (IPC) mechanism that will allow them to exchange data and information.
There are two fundamental models of interprocess communication: shared memory and message passing.
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	shared-memory model
	Message passing model

	A region of memory that is shared by cooperating processes is established. Processes can then exchange information by reading and writing data to the shared region.
	In the message-passing model, communication takes place by means of messages exchanged between the cooperating processes.


	faster than message passing

	*Slower because it’s implemented using system calls and thus require the more time-consuming task of kernel intervention. 
*Useful for exchanging smaller amounts of data, because no conflicts need be avoided.


	A shared-memory region resides in the address space of the process creating the shared-memory segment.
Other processes that wish to communicate using this shared-memory segment must attach it to their address space.
	Provides a mechanism to allow processes to communicate and to synchronize their actions without sharing the same address space.
*useful (easier to implement) in a distributed environment, where the communicating processes may reside on different computers connected by a network.

	System calls are required only to establish shared memory regions.
Then: all accesses are treated as routine memory accesses, and no assistance from the kernel is required.
	A message-passing facility provides at least two operations:
send(message) receive(message)

	For example, a web server produces (that is, provides) HTML files and images, which are consumed (that is, read) by the client web browser requesting the resource.
	We generally think of a server as a producer and a client as a consumer. For example, a web server produces (that is, provides) HTML files and images, which are consumed (that is, read) by the client web browser requesting the resource.

	Shared memory suffers from cache coherency issues, which arise because shared data migrate among the several caches.
	Research indicates that it provides better performance than shared memory on systems with several cores



If processes P and Q want to communicate: a communication link must exist between them.
Several methods for logically implementing a link and the send()/receive() operations:
•Direct or indirect communication (Naming)
• Synchronous or asynchronous communication
• Automatic or explicit buffering
1- Direct or indirect communication (Naming)

	Direct: Each process that wants to communicate must explicitly name the recipient or sender of the communication.(symmetry in addressing)
	Direct: asymmetry in addressing. Here, only the sender names the recipient; the recipient is not required to name the sender.
	Indirect: the messages are sent to and received from
mailboxes, or ports
A mailbox: like an object into which messages can be placed by processes and from which messages can be removed.

	the send() and receive() primitives are defined as:
• Send (P, message)—Send a message to process P.
• receive(Q, message)—Receive a message from process Q.
	the send() and receive() primitives are defined as follows:
• Send (P, message)—Send a message to process P.
• receive (id, message)—Receive a message from any process. The variable id is set to the name of the process with which communication has taken place.
	send() and receive() primitives are defined as follows:
• send(A, message)—Send a message to mailbox A.
• receive(A, message)—Receive a message from mailbox A.

	
	
	· Each mailbox has a unique ID. Example, POSIX message queues use an integer value to identify a mailbox.
· A process can communicate with another process via a number of different mailboxes, but two processes can communicate only if they have a shared mailbox.


	•A link is established automatically between every pair of processes that want to communicate. The processes need to know only each other’s identity to communicate.
• A link is associated with exactly two processes.
• Between each pair of processes, there exists exactly one link.
	
	• A link is established between a pair of processes only if both members of the pair have a shared mailbox.
• A link may be associated with more than two processes.
• Between each pair of communicating processes, a number of different links may exist, with each link corresponding to one mailbox.

	The disadvantage in both of these schemes (symmetric and asymmetric)is the limited modularity of the resulting process definitions (Changing the identifier of a process may necessitate examining all other process definitions).
	



2-Synchronization
Communication between processes takes place through calls to send() and receive() primitives.
There are different design options for implementing each primitive:
• Blocking send. 
• Nonblocking send. 
• Blocking receive. 
• Nonblocking receive. 
	
	Sending process
	Receiving process

	Blocking(synchronous)
	Blocked 
	Waiting the massage to recive

	
	Waiting the message to be available
	blocked

	rendezvous
	blocked
	Blocked(both)

	Nonblocking (asynchronous).
	Sends the message and waits 
	

	
	
	Retrieves either a valid or null message



3-Buffering
Messages exchanged by communicating processes reside in a temporary queue whether communication is direct or indirect.
Such queues can be implemented in three ways:
	
	Zero capacity.
	Bounded capacity.
	Unbounded capacity.

	Queue length
	queue has a maximum length of zero
	queue has finite length n; at most n messages can reside in it
	queue’s length is infinite

	link
	The link cannot have any messages waiting in it.
	A: Queue is not full: any new message is placed in it when arrived.
B:the link is full:
	Any number of messages can wait in the queue.

	sender
	The sender must block until the recipient receives the message.
	A:sender can continue execution without waiting
B: the sender must block until space is available in the queue.
	The sender never blocks



3.5 Examples of IPC Systems
3.5.1 An Example: POSIX Shared Memory
Here, we explore the POSIX API for shared memory.
[image: ]
POSIX shared memory is 
· Organized using memory-mapped files, which associate the region of shared memory with a file. 
· A process must first create a shared-memory object using the shm_open() system call, as follows: 
                         shm_fd = shm_open (name, 0_CREAT | 0_RDRW, 0666);
· The first parameter specifies the name of the shared-memory object.
· The Subsequent parameters specify that the shared-memory object is to be created 
*if it does not yet exist (O_CREAT) and that the object is open for reading and writing (O_RDRW).
· The last parameter establishes the directory permissions of the shared-memory object.
· A successful call to shm_open () returns an integer file descriptor for the shared-memory object. 
· Once the object is established, the ftruncate () function is used to configure the size of the object in bytes. The call   ftruncate (shm_fd,  4096); sets the size of the object to 4,096 bytes.
· Finally, the mmap () function establishes a memory-mapped file containing the shared-memory object.
· It also returns a pointer to the memory-mapped file that is used for accessing the shared-memory object.
3.5.2 An Example: Mach
· Most communication in Mach including all intertask information-is carried out by messages.
· Messages are sent to and received from mailboxes, called ports in Mach.
· Even system calls are made by messages. When a task is created, two special mailboxes-the Kernel mailbox and the Notify mailbox-are also created.
· Kernel mailbox to communicate with the task and sends notification of event occurrences to the Notify port.
· Only three system calls are needed for message transfer.
· 1- The msg_send () call sends a message to a mailbox.
2-A message is received via msg_receive (). 
3-Remote procedure calls (RPCs) are executed via msg_rpc (), which sends a message and waits for exactly one return message from the sender.
· The port_allocate () system call creates a new mailbox and allocates space for its queue of messages.
· For more information and windows example look at textbook p131

3.6 Communication in Client-Server Systems
Shared memory and message passing. These techniques can be used for communication in client-server systems. In this section, we explore three other strategies for communication in client-server systems: sockets, remote procedure calls (RPCs), and pipes.
3.6.1 Sockets
· A socket is defined as an endpoint for communication.
·  A pair of processes communicating over a network employs a pair of sockets.
· A socket is identified by an IP address concatenated) متسلسلة with a port number.
· Sockets use a client-server architecture.
· Servers implementing specific services (such as telnet, FTP, and HTIP) listen to well-known ports (a telnet server listens to port 23; an FTP server listens to port 21; and a web, or HTIP, server listens to port 80).
· All ports below 1024 are considered well known; we can use them to implement standard services.
· When a client process initiates a request, it is assigned a port by its host computer. This port has some arbitrary number greater than 1024.
· All connections must be unique.
· We will illustrate sockets using Java, as it provides a much easier interface to sockets and has a rich library for networking utilities.
· Java provides three different types of sockets.
· Connection-oriented (TCP) sockets are implemented with the Socket class. Connectionless (UDP) sockets use the DatagramSocket class. Finally, the MulticastSocket class is a subclass of the DatagramSocket class: allows data to be sent to multiple recipients.
Our example describes a date server that uses Connection-oriented TCP sockets.
The operation allows clients to request the current date and time from the server.
 The server listens to port 6013.
When a connection is received, the server returns the date and time to the client.
The server creates a ServerSocket that specifies that it will listen to port 6013.
The server then begins listening to the port with the accept() method.
The server blocks on the accept () method w When a connection request is received, accept () returns a socket that the server can use to communicate with the client. aiting for a client to request a connection.
The server first establishes a PrintWriter object that it will use to communicate with the client.
A PrintWriter object allows the server to write to the socket using the routine print() and println() methods for output.
 The server process sends the date to the client, calling the method println (). 
Once it has written the date to the socket, the server closes the socket to the client and resumes listening for more requests.
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3.6.2 Remote Procedure Calls
The RPC was designed as a way to abstract the procedure-call mechanism for use between systems with network connections.
· In contrast to IPC messages, the messages exchanged in RPC communication are well structured and are thus no longer just packets of data.
· Each message is 
1-addressed to an RPC daemon listening to a port on the remote system. 
2-contains an identifier specifying the function to execute and the parameters to pass to that function.
3-The function is then executed as requested, and any output is sent back to the requester in a separate message.
· A port is simply a number included at the start of a message packet.
· A system normally has one network address, many ports within that address to differentiate the many network services it supports.
· The semantics of RPCS allows a client to invoke a procedure on a remote host as it would invoke a procedure locally.
· The RPC system hides the details that allow communication to take place by providing a stub on the client side.
· This stub locates the port on the server and marshals the parameters.
· Marshalling involves packaging the parameters so that can be transmitted over a network.
· The stub then transmits a message to the server using message passing.
· On Windows systems, stub code is compiled from a specification written in the Microsoft Interface Definition Language (MIDL), which is used for defining the interfaces between client and server programs.


· Issues that must be dealt with:
1-differences in data representation on the client and server machines:
· Some systems (known as big-endian) store the most significant byte first, while other systems (known as little-endian) store the least significant byte first.
To resolve differences like this, many RPC systems define a machine-independent representation of data (known as external data representation (XDR)).

2- Another important issue involves the semantics of a call.
· Local procedure calls fail only under extreme circumstances, RPCs can fail, or be duplicated and executed more than once, as a result of common network errors.
· One way to address this problem is for the OS to ensure that messages are acted on exactly once, rather than at most once.


3- Yet another important issue concerns the communication between a server and a client.
· Two approaches are common. First, the binding information may be predetermined, in the form of fixed port addresses.
· Second, binding can be done dynamically by a rendezvous mechanism. Typically, an operating system provides a rendezvous (also called a matchmaker) daemon on a fixed RPC port.


3.6.3 Pipes
A pipe acts as a conduit allowing two processes to communicate.
· Pipes were one of the first/simpler IPC mechanisms in early UNIX systems.
In implementing a pipe, four issues must be considered:
1. Does the pipe allow bidirectional/unidirectional communication?
2. If two-way communication is allowed, is it half duplex (data travel only one way at a time) or full duplex (in both directions at the same time)? 
3.  Must a relationship (such as parent-child) exist between the communicating processes? 
4.  Can the pipes communicate over a network, or must the communicating processes reside on the same machine?
3.6.3.1 Ordinary Pipes
Allow two processes to communicate in standard producer-consumer fashion.
· The producer writes to one end of the pipe (the write-end) and the consumer reads from the other end (the read-end).
· Ordinary pipes are unidirectional(one-way).
· If two-way communication is required, two pipes must be used, with each pipe sending data in a different direction.
· on both UNIX and Windows
One process writes the message Greetings to the pipe, while the other process reads.
· On UNIX systems, ordinary pipes are constructed using the function 
*pipe (int fd []): fd [OJ is the read-end of the pipe, and fd [1] is the write-end.
*UNIX treats a pipe as a special type of file. Thus, pipes can be accessed using ordinary read() and write() system calls.
*An ordinary pipe cannot be accessed from outside the process that created it.
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message next_consumed;

while (true) {
receive(next.consumed) ;

/* consume the item in next consumed */

Figure 3.16 The consumer process using message passing.
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import java.net.
import java.io.*;

public class DateServer
{

public static void main(String(] args) {

try {
ServerSocket sock = new ServerSocket(6013);

/% now listen for connections */
while (true) {
Socket client = sock.accept();

Printhiriter pout = new
PrintWriter(client.getOutputStream(), true);

/% vrite the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections +/
client.close();

}

catch (I0Exception ioe) {
System.err.println(ice);
}
}
}
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Figure 34 Diagram showing CPU switch from process to process.
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