

CS141 programming II (java)

Assignment 1

Chapter 9 –Interface, polymorphism

Chapter 10 - Inheritance

Assignment 1 worth 5 points, Due on Sunday 16/10/2016. Will deduct 1 point for

each day late. Copying each other work will result in giving 0 to both.

Q1. Explain why and give examples. “In OO programming Polymorphism is only

possible when using Interface or Inheritance” . (5 points)

ANSWER:

For a method to be polymorphic it has to behave differently depending on the object that

calls it. The Java compiler bind the method call dynamically at run time and determine

the correct method to execute.

The mechanism to implement polymorphism is in using Inheritance or Interface

In Interface more than one class can implement the same Interface. The same method

name and signature that is specified in the interface must be implemented in the classes

that implements that interface.

Example both BankAccount and Coint classes implement the Measurable Interface that

has a method called getMeasure()

BankAccount a1 = new BankAccount();

Coin c1 = new Coin();

Now both objects can call getMeasure() method which will be a polymorphic method

since it will behave differently depending on the object that called it.

a1.getMeasure(); // will return balance

c1.getMeasure(); // will return coin value

In Inheritance polymorphism is also possible when a child class (subclass) implements

the same method that was implemented in its parent (superclass).

Example: a superclass BankAccount class has a method called withdraw() that is

implemented.

But it’s child CheckingAccount class re-implement the same method withdraw()

BankAccount p1 = new BankAccount();

CheckingAccount c1 = new CheckingAccount();

Now both object can call withdraw() method which will be a polymorphic method since

it will behave differently depending on the object that called it.

p1.withdraw(); // will run the parent method

c1.withdraw(); // will run the child method

Q2. Can we create an object of type Interface? Explain your answer. (5 points)

ANSWER:

No.

Interface is not a class, it is like a contract that specify the methods that must be

implemented by the classes that will use that interface.

The Interface has no constructor or instance variables. It only has public abstract methods

that are defined but not implemented.

Q3. Complete the following code, and run to demonstrate the use of Interface. (10

points)

The main class tester is given to you, complete the code in the Interface and the two

Classes.

Notice when coding Interface using Eclipse choose New Interface, NOT New Class

Here is a sample Run:

Return 0.0

Return 2000.5

Return 1.0

Return 0.25

public class chapt9Tester { // the tester is complete,

just run it after you finish the rest of the code

 public static void main(String[] args) {

 // create two bankaccount objects a1 using constructor

without parameters, and object a2 using constructor with parameter

sending it the amount 2000.50

 BankAccount a1 = new BankAccount();

 BankAccount a2 = new BankAccount(2000.50);

 // create two coin objects c1 using constructor without

parameters and c2 using constructor and sending 0.25 and "Quarter"

 Coin c1 = new Coin();

 Coin c2 = new Coin(0.25, "Quarter");

 // now create an array of 4 elements of type Measurable and

load it with the 4 objects that you just created

 Measurable marr[] = { a1, a2, c1, c2 };

 for (int i=0; i< marr.length; i++) {

 double r = marr[i].getMeasure(); // getMeasure()

will behave differently depending on the object that called it

 System.out.println("Return " + r);

 }

 // notice that a variable of type Measure marr can

refer to BankAccount object or Coin object without casting.

 // however it can only call the methods that are

declared in the Measure interface

 // so a call like marr[0].withdraw() is not allowed

 }

}

// This is the Interface complete the missing code, (if you use

Eclipse: click on File -> New -> Interface)

Public _______________ Measurable {

 double getMeasure();

}

// BankAccount class will use the interface

public class BankAccount ___________________ Measurable{

 private double balance;

 public BankAccount(double amt) { //constructor

with parameter

 balance = amt;

 }

 public BankAccount() { //constructor without

parameter, set balance to 0

 }

 public void deposit(double amt){

 balance = balance + amt;

 }

 public void withdraw(double amt){

 balance = balance - amt;

 }

 @Override

 public double getMeasure() {

 return balance;

 }

}

// Coin class will use the same interface

public class Coin ________________ ____________________ {

 private double value = 1;

 private String name = "Dollar";

 public Coin(double v, String n){ // constructor with two

parameters

 value = v;

 name = n;

 }

 public _______________ { // constructor without

parameters

 value = 1;

 _____________________;

 }

 // implement the interface method getMeasure here

 public _________ ___________________ {

 return value;

 }

}

ANSWER:

public interface Measurable {

 double getMeasure();

}

public class BankAccount implements Measurable{

 private double balance;

 public BankAccount(double amt) { //constructor

with parameter

 balance = amt;

 }

 public BankAccount() { //constructor without

parameter

 balance = 0;

 }

 public void deposit(double amt){

 balance = balance + amt;

 }

 public void withdraw(double amt){

 balance = balance - amt;

 }

 @Override

 public double getMeasure() {

 return balance;

 }

}

public class Coin implements Measurable {

 private double value = 1;

 private String name = "Dollar";

 public Coin(double v, String n){ // constructor with two

paramters

 value = v;

 name = n;

 }

 public Coin(){ // constructor without paramters

 value = 1;

 name = "Dollar";

 }

 @Override

 public double getMeasure() {

 return value;

 }

}

Q4. What is the output of the following code: (10 points)

public class InheritanceTester {

 public static void main(String[] args) {

 MySubClass mysub = new MySubClass();

 System.out.println(mysub.myMethod());

 }

}

public class MySubClass extends MySuperClass{

 public MySubClass()

 {

 System.out.println("Subclass constructor has been

called..");

 }

}

public class MySuperClass {

 public MySuperClass()

 {

 System.out.println("Superclass constructor has been

called..");

 }

 public String myMethod()

 {

 return "Superclass method has been called";

 }

}

Answer:
Superclass constructor has been called..

Subclass constructor has been called..

Superclass method has been called

Q5. Consider the following problem description and write java code: (20 points)

A company need to store its employees information. Each employee has an id,

name, date of birth, phone number and salary. Using the diagram, write your java

classes that shows the inheritance between these classes, and consider the

following:

1. Class employee has a method work() which returns the statement “I am an

employee”

2. Class employee overrides toString() method to return the employee

information. Or if you don’t what to override toString() you can write your

own method to return the employee info. (both ways are accepted)

3. Each subclass should overrides the method work() to return its work. You

need to call work() of the superclass. For example:

Method work() in executive class should returns:
I am an employee.. I work as an executive.

So in each subclass work() method first call it’s

parent work() method by using super. Which will

return “I am an employee ..” and then add the child

own details. in this example “I work as an

executive”

4. Implement the main class Company which constructs objects from the 3

subclasses, and test all of their methods.

Sample Run will result in:

I am an employee.. I work as an executive.

My ID is: 1234567890

My Name is: John Smith

My Date of Birth is: 1-1-1981

My phone is: 555-555-12345

My Salary is: 10,000

I am an employee.. I work as a Software Engineer.

My ID is: 0987654321

My Name is: Jane Doe

My Date of Birth is: 1-1-1988

My phone is: 555-555-12345

My Salary is: 11,000

I am an employee.. I work as a Software Manager.

My ID is: 9988776655

My Name is: Joe Green

My Date of Birth is: 1-1-1978

My phone is: 555-555-12345

My Salary is: 11,100

Answer:

This is my version of simplified answer for this program. I think some answer like this

can be accepted from students, but it should include the “grand son child”

SoftwareManager.

public class Ch10Company {

 public static void main(String[] args) {

 Executive exc = new Executive(123456789, "John Smith",

12000.00);

 SoftwareEng eng = new SoftwareEng(987654321, "Jane Doe",

10000.00);

 exc.work();

 System.out.println(exc.getInfo());

 eng.work();

 System.out.println(eng.getInfo());

 }

}

public class Employee {

 private int ID;

 private String name;

 private double salary;

 public Employee(int id, String n, double s)

 {

 ID = id;

 name = n;

 salary = s;

 }

 public String getInfo()

 {

 return (ID + " " + name + " " + salary);

 }

 public void work()

 {

 System.out.print("I am an Employee ...");

 }

}

public class Executive extends Employee {

 public Executive(int i, String n, double s)

 {

 super(i, n, s);

 }

 public void work()

 {

 super.work();

 System.out.println("I work as an Executive. ");

 }

}

public class SoftwareEng extends Employee {

 public SoftwareEng(int i, String n, double s)

 {

 super(i, n, s);

 }

 public void work()

 {

 super.work();

 System.out.println("I work as a Software Engineer. ");

 }

}

