CHAPTER 9

INPUT/OQUTPUT

9.0 INTRODUCTION

Of course you’re aware that no matter how powerful the CPU is, a computer system’s
usefulness ultimately depends on its input and output facilities. Without I/O there is
no possibility of keyboard input, of screen output, of printout, or even of disk storage
and retrieval. Although you might be inclined to think of I/O in terms of user input and
output, there would be no computer network or Internet access either. To the CPU
and its programs, all these devices require specialized input and output processing
facilities and routines.

In fact, for most business programs and for nearly every multimedia application,
/O is the predominant factor. E-commerce applications offer an even bigger challenge:
Web services generally require massive amounts of fast I[/O to handle and process
I/O requests as they occur. The speed at which most of these programs operate is
determined by the ability of their I/O operations to stay ahead of their processing.
With PCs rapidly increasing in CPU processing capability, but still somewhat limited
in I/O processing, it has been greater I/O capability that has maintained, until recently,
the advantage of mainframe computers over PCs for business transaction processing.

We handled input and output in the Little Man Computer by providing input
and output baskets for that purpose. Each input instruction transferred one three-digit
data number from the input basket to the calculator; similarly, each output instruction
transferred one data number from the calculator to the output basket. If we wanted to
input three numbers, for example, an input instruction had to be executed three times.
This could be done with three separate input instructions or in a loop, but either way,
each individual piece of data required the execution of a separate input instruction.

It is possible to transfer data between input and output devices and the CPU of
a real computer in a similar manner. In the real computer, the in basket and out
basket are commonly replaced by a bus interface that allows a direct transfer between a
register within the CPU and a register within an I/O module that controls the particular
device. Both input and output are handled similarly. The technique is known as pro-
grammed I/O.

There are a number of complicating factors in handling input/output processes
(which we will normally simply call I/O) in a real computer. Although the method
of transferring data one word at a time does really exist, and may be adequate and
appropriate for some slow-operating I/O devices, the volume of data commonly
transferred in I/O devices, such as disks and tapes, makes this method too slow and
cumbersome to be practical as the only I/O transfer method in a modern high-speed
machine. We need to consider some method of transferring data in blocks rather than
executing an instruction for each individual piece of data.

The problem is further complicated by the fact that in a real computer, there may be
many input and output devices all trying to do I/O, sometimes at the same time. There
needs to be a way of distinguishing and separating the I/O from these different devices.
Additionally, devices operate at different speeds from each other and from the CPU.

277

278

&

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

An inkjet printer may output characters at a rate of 150 per second, whereas a disk may
transfer data at a rate of tens or hundreds of thousands, or even millions, of bytes per
second. Synchronization of these different operations must be achieved to prevent data loss.

Finally, it should be noted that I/O operations take up a lot of computer time. Even if
a block of data can be transferred between the CPU and a disk with a single instruction,
much time is potentially wasted waiting for the completion of the task. A CPU could
execute millions of instructions in the time it takes a printer to print a single character. In
a large modern computer, the number of I/O operations may be very large. It would be
convenient and useful to be able to use the CPU for other tasks while these 1/O transfers
are taking place.

In the computer, several different techniques are combined to resolve the problem
of synchronizing and handling I/O between a variety of different I/O devices operating
with different quantities of data at different speeds. In this chapter, we first consider the
I/O requirements of some commonly used devices. This discussion, which appears in
Section 9.1, leads to a set of requirements that the I/O-CPU interface should meet to
optimize system performance. Next, in Section 9.2 we briefly review programmed 1/O, the
method used in the Little Man Computer, and consider its limitations. Section 9.3 addresses
the important issue of interrupts, the method used to communicate events that need special
attention to the CPU. Interrupts are the primary means for the user to interact with the
computer, as well as the means used for communication between the CPU and the various
I/O devices connected to the system. In Section 9.4 we look at Direct Memory Access, or
DMA, a more efficient alternative technique used to perform I/O in the computer. DMA
provides the ability to utilize the CPU more fully while I/O operations are taking place.
Finally, Section 9.5 considers the I/O modules that provide the capability both to control
the I/O devices and to interact with the CPU and memory.

9.1 CHARACTERISTICS OF TYPICAL I/0 DEVICES

Before discussing the techniques that are used in the real computer for performing I/0O, it
will help to consider some characteristics of the devices that will typically be connected to
the computer. In this chapter we are not interested in the inner workings of these devices nor
with the interconnection of the various computer components and I/O devices that make
up the whole computer system—these discussions we’ll save for Chapters 10 and 11, respec-
tively. For now, we are only interested in those characteristics of these devices that will affect
the I/O capabilities of the computer, in particular the speed and quantity of data transfer
required to use the computer efficiently and fully. This survey is intended to be intuitive: what
must be true about the I/O, based on what you already know about the particular devices
from your own practical experience. Although this discussion may seem like a digression, it
is intended to establish a set of basic principles and requirements that will help you to better
understand the reasons behind the methods that are used to perform I/O in computers.

Consider, for example, the keyboard as an input device. The keyboard is basically a
character-based device. You are probably already aware that typing on the keyboard of
your PC results in Unicode or ASCII input to the computer, one character at a time. Even
mainframe terminals, many of which can send text to the computer a page at a time, only
transmit a page occasionally, so the data rate for keyboards is obviously very slow compared
to the speed at which the CPU processes the data.

P

CHAPTER 9 INPUT/OUTPUT 279

Input from the keyboard is very slow because it is dependent on the speed of typing, as
well as on the thought process of the user. There are usually long thinking pauses between
bursts of input, but even during those bursts, the actual input requirements to the computer
are very slow compared to the capability of the computer to execute input instructions.
Thus, we must assume that if the computer is simply performing a single task, it will spend
most of its time waiting for input from the keyboard.

It is also useful to note that there are two different types of keyboard input. There
is input that is expected by the application program in response to a “read” statement of
some kind requesting input data for the program. Then there are other times when the
user wishes to interrupt what the computer is doing. On many computers, a character
such as Control-“C” or Control-“D” or Control-“Q” can be typed to stop the program
that is running. Control-“S” is used on some machines to stop the display from scrolling.
Typing Control-Alt-Delete on a PC will stop normal processing and open an administrative
window that can be used to kill a program or shut down the computer. These are examples
of unpredicted input, since the executing program is not necessarily awaiting specific input
at those times. Using the input method that we already described would not work: the
unexpected input would not be noticed, possibly for a long time until the next input
instruction was executed for some later expected input.

Finally, on a multiuser system, there may be many keyboards connected to a single
computer. The computer must be able to distinguish between them, must not lose input
data even if several keyboards send a character simultaneously, and must be able to respond
quickly to each keyboard. The physical distances from the computer to these keyboards
may be long.

Another input device that will generate unexpected input is the mouse. When you
move the mouse, you expect the cursor to move on the screen. Clicking on a mouse button
may serve as expected input to a program, or it may be unexpected and change the way
in which the program is executing. In fact, unexpected input is fundamental to programs
written in modern event-driven languages such as Visual Basic and Java. When the user
selects an item on a drop-down menu or clicks on a toolbar icon, she expects a timely
response. Again, data rates are slow.

Printers and display screens must operate over a wide range of data rates. Although
most monitors and printers are capable of handling pure ASCII or Unicode text, most
modern output is produced graphically or as a mixture of font descriptors, text, bitmap
graphics, and object graphics, a page or a screen at a time, using a page description language.
The choice of page description language and mixture of elements is determined by the
capabilities of the printer or graphics card. Clearly, output to a printer consisting only of
an occasional page or two of text will certainly not require a high data rate regardless of the
output method used.

The output of high resolution bitmap graphics and video images to a monitor is
quite a different situation. If the graphics must be sent to the graphics card as bitmap
images, even in compressed form, with data for each pixel to be produced, it may take
a huge amount of data to produce a single picture, and high-speed data transfer will be
essential. A single, color image on a high-resolution screen may require several megabytes
of data, and it is desirable to produce the image on the screen as fast as possible. If the
image represents video, extremely high data transfer rates are required. This suggests that
screen image updates may require bursts of several megabytes per second, even when data

P

280

&

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

compression methods are used to reduce the transfer rate. It may also suggest to you why
it is nearly impossible to transmit high quality images quickly over voice-grade phone lines
using modems.

Contrast the I/O requirements of keyboards, screens, and printers with those of disks
and DVDs. Since the disk is used to store programs and data, it would be very rare that
a program would require a single word of data or program from the disk. Disks are used
to load entire programs or store files of data. Thus, disk data is always transferred in
blocks, never as individual bytes or words. Disks may operate at transfer rates of tens or,
even, hundreds of megabytes per second. As storage devices, disks must be capable of both
input and output, although not simultaneously. On a large system there may be several
disks attempting to transfer blocks of data to or from the CPU simultaneously. A DVD
attempting to present a full screen video at movie rates without dropouts must provide
data steadily at input rates approaching 10 megabytes per second, with some transient
rates and high definition video rates even higher. In addition, video and audio devices
require a steady stream of data over long periods of time. Contrast this requirement with
the occasional bursts of data that are characteristic of most I/O devices.

For both disk and image 1/O, therefore, the computer must be capable of transferring
massive amounts of data very quickly between the CPU and the disk(s) or image devices.
Clearly, executing a single instruction for each byte of data is unacceptable for disk and
image I/O, and a different approach must be used. Furthermore, you can see the importance
of providing a method to allow utilization of the CPU for other tasks while these large I/O
operations are taking place.

With the rapid proliferation of networks in recent years, network interfaces have also
become an important source of I/0. From the perspective of a computer, the network is
just another I/O device. In many cases, the network is used as a substitute for a disk, with
the data and programs stored at a remote computer and served to the local station. For the
computer that is acting as a server, there may be a massive demand for I/O services. User
interfaces such as X Windows, which allow the transfer of graphical information from a
computer to a display screen located elsewhere on the network, place heavy demands on
I/O capability. With simple object graphics, or locally stored bitmap images, and with a
minimal requirement for large file transfers, a small computer with a modem may operate
sufficiently at I/O transfer rates of 3,000 bytes per second, but computers with more
intensive requirements may require I/O transfer rates of 50 megabytes per second, or more.

A table of typical data rates for various I/O devices appears in Figure 9.1. The values
given are rough approximations, since the actual rates are dependent on the particular hard-
ware systems, software, and application. As computer technology advances, the high end
data rates continue to increase at a rapid pace. For example, local area networks operating at
1 gigabit (or, equivalently, 125 megabytes) per second are increasingly common.

It should be pointed out that disks, printers, screens, and most other I/O devices
operate almost completely under CPU program control. Printers and screens, of course, are
strictly output devices, and the output produced can be determined only by the program
being executed. Although disks act as both input and output devices, the situation is similar.
It is the executing program that must always determine what file is to be read on input, or
where to store output. Therefore, it is always a program executing in the CPU that initiates
I/O data transfer, even if the CPU is allowed to perform other tasks while waiting for the
particular I/O operation to be completed.

P

CHAPTER 9 INPUT/OUTPUT 28I

FIGURE 9.1
Examples of 1/0 Devices Categorized by a Typical Data Rate

Device Input/Output Data rate Type
Keyboard Input 100 bps char
Mouse Input 3800 bps char
Voice input/output Input/Output 264 Kbps block burst
Sound input Input 3 Mbps block burst or steady
Scanner Input 3.2 Mbps block burst
Laser printer Output 3.2 Mbps block burst
Sound output Output 8 Mbps block burst or steady
Flash drive Storage 480-800 Mbps read; block burst

80 Mbps write
USB Input or output 1.6-480 Mbps block burst
Network/Wireless LAN Input or output 11-100 Mbps block burst
Network/LAN Input or output 100-1000 Mbps block burst
Graphics display Output 800-8000 Mbps block burst or steady
Optical disk Storage 4-400 Mbps block burst or steady
Magnetic tape Storage 32-90 Mbps block burst or steady
Magnetic disk Storage 240-3000 Mbps block burst

Adapted from Patterson, David A. and John L. Hennessy, (2005), Computer Organization and Design, 3rd Edition,
Morgan Kaufmann Publishers, Inc, San Fransisco, CA

Some input devices must be capable of generating input to the CPU independent of
program control. The keyboard and mouse were mentioned earlier in this context, and
voice input would also fall into this category. Some devices, such as CD-ROMs and USB
devices, can self-initiate by signaling their presence to a program within the operating
system software. Local area networks can also generate this kind of input, since a program
on a different CPU might request, for example, a file stored on your disk. In a slightly
different category, but with similar requirements, are input devices for which input is under
program control, but for which the time delay until arrival of the data is unpredictable,
and possibly long. (You might consider regular keyboard input in this category, especially
when writing a paper using your word processor.) This would be true if the data is being
telemetered from some sort of measurement device. For example, the computer might be
used to monitor the water level at a reservoir, and the input is water-level data that is
telemetered by a measurement device once per hour. Provision must be made to accept
unpredictable input and process it in some reasonable way, preferably without tying up the
CPU excessively.

Additionally, there will be situations where an I/O device being addressed is busy or
not ready. The most obvious examples are a printer that is out of paper or a DVD drive
with no disk in it or a hard disk that is processing another request. It would be desirable for
the device to be able to provide status information to the CPU, so that appropriate action
can be taken.

282

&

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

The discussion in this section establishes several requirements that will have to be met
for a computer system to handle I/O in a sufficient and effective manner:

There must be a means for individually addressing different peripheral devices.

There must be a way in which peripheral devices can initiate communication
with the CPU. This facility will be required to allow the CPU to respond to
unexpected inputs from peripherals such as keyboards, mice, and networks, and
so that peripherals such as printers and floppy disk drives can convey emergency
status information to the executing program.

Programmed 1/0O is suitable only for slow devices and individual word transfers.
For faster devices with block transfers, there must be a more efficient means of
transferring the data between I/O and memory. Memory is a suitable medium
for direct block transfers, since the data has to be in memory for a program to
access it. Preferably this could be done without involving the CPU, since this
would free the CPU to work on other tasks.

The buses that interconnect high-speed I/O devices with the computer must be
capable of the high data transfer rates characteristic of modern systems. We will
return to this issue in Chapter 11.

Finally, there must be a means for handling devices with extremely different
control requirements. It would be desirable if I/O for each of these devices could
be handled in a simple and similar way by programs in the CPU.

The last requirement suggests that it is not practical to connect the I/O devices directly
to the CPU without some sort of interface module unique to each device. To clarify this
requirement, note the following conditions established from the previous discussion:

1.

The formats required by different devices will be different. Some devices require
a single piece of data, and then must wait before another piece of data can be
accepted. Others expect a block of data. Some devices expect 8 bits of data at a
time; others require 16, 32, or 64. Some devices expect the data to be provided
sequentially, on a single data line. Other devices expect a parallel interface. These
inconsistencies mean that the system would require substantially different
interface hardware and software for each device.

The incompatibilities in speed between the various devices and the CPU will
make synchronization difficult, especially if there are multiple devices attempting
to do I/O at the same time. It may be necessary to buffer the data (i.e., hold it and
release part of it at particular times) to use it. A buffer works something like a
water reservoir or tower. Water enters the reservoir or tower as it becomes
available. It is stored and released as it can be used. A computer buffer uses
registers or memory in the same way.

Although the I/O requirements for most devices occur in bursts, some
multimedia, video and audio in particular, provide a steady stream of data that
must be transferred on a regular basis to prevent dropouts that can upset a user.
I/O devices and the interconnections that support multimedia services must be
capable of guaranteeing steady performance. This often includes network
interfaces and high-speed communication devices as well as such devices as video

P

CHAPTER 9 INPUT/OUTPUT 283

cameras, since networks are frequently used to supply audio and video. (Think of
downloading streaming video from the Web.)

4. Devices such as disk drives have electromechanical control requirements that
must be met, and it would tie up too much time to use the CPU to provide that
control. For example, the head motors in a disk drive have to be moved to the
correct disk track to retrieve data and something must continually maintain the
current head position on the track once the track is reached. There must be a
motor controller to move the print heads in an inkjet printer across the paper to
the correct position to print a character. And so on. Of course, the requirements
for each device are different.

The different requirements for each I/0 device plus the necessity for providing devices
with addressing, synchronization, status, and external control capabilities suggest that it
is necessary to provide each device with its own special interface. Thus, in general, I/O
devices will be connected to the CPU through an I/O module of some sort. The I/O module
will contain the specialized hardware circuits necessary to meet all the I/O requirements
that we established, including block transfer capability with appropriate buffering and a
standardized, simple interface to the CPU. At the other interface, the /O module will have
the capability to control the specific device or devices for which it is designed.

The simplest arrangement is shown in Figure 9.2. I/O modules may be very simple and
control a single device, or they may be complex, with substantial built-in intelligence, and
may control many devices. A slightly more complex arrangement is shown in Figure 9.3.

The additional I/O modules require addressing to distinguish them

FIGURE 9.2 from each other. The lower module will actually recognize addresses
Simple 1/0 Configuration for either of the I/O devices connected to it. /O modules that control

a single type of device are often called device controllers. For example,
CPU— mtl)i:l%le — del\//ioce an I/O module that controls disks would be a disk controller. We look

at the I/O modules more carefully in Section 9.5.

FIGURE 9.3
A Slightly More Complex 1/0 Module Arrangement
Data N\
1/0 Data 1/0
module device
/0 Address N———
data
rgstr
1/0
device
Data Data J
1/0
/0 module Data
address Add
rgstr ress 1/0
device
CPU

284

&

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

9.2 PROGRAMMED 1/0

In the simplest method for performing I/0, an I/O module is connected to a pair of I/O
registers in the CPU via a bus. The I/O data register serves the same role in the real CPU
as the input and output baskets served in the Little Man Computer. Alternatively, one
might view the I/O baskets as buffers, holding multiple inputs or outputs, with the I/O data
register as the interface between the CPU and the buffer. The 1/O operation is similar to
that of the Little Man Computer. Input from the peripheral device is transferred from the
I/0 module or buffer for that peripheral device one word at a time to the I/O data register
and from there to an accumulator register under program control, just as occurred in the
Little Man Computer. Similarly, individual words of output data pass from an accumulator
register to the I/O data register where they can be read by the appropriate I/O module,
again under program control. Each instruction produces a single input or output. This
method is known as programmed I/0.

In practice, it is most likely that there will be multiple devices connected to the CPU.
Since each device must be recognized individually, address information must be sent with
the I/0 instruction. The address field of the I/O instruction can be used for this purpose. An
I/O address register in the CPU holds the address for transfer to the bus. Each I/O module
will have an identification address that will allow it to identify I/O instructions addressed
to it and to ignore other I/O not intended for it.

As has been noted, it is common for an I/O module to have several addresses, each
of which represents a different control command or status request, or which addresses
a different device when a particular module supports multiple devices. For example, the
address field in the Little Man input and output instructions could be used to address up
to a combination of one hundred devices, status requests, or control commands. Figure 9.4
illustrates the concept of programmed I/O. Indeed, the LMC uses the address field to select
the I-basket (901) or O-basket (902) as the I/O device within the 900 instruction.

The I/O data and address registers work similarly to the memory address register
(MAR) and memory data register (MDR). In fact, in some systems, they may even be
connected to the same bus. The CPU places a control signal on the bus to indicate whether
the transfer is I[/O or memory.

Programmed I/O is obviously slow, since a full instruction fetch-execute cycle must
be performed for each and every I/O data word to be transferred. Programmed I/O is
used today primarily with keyboards, with occasional application to other simple character
based data transfers, such as the transmission of commands through a network I/O module
or modem. These operations are slow compared with the computer, with small quantities
of data that can be handled one character at a time. One limitation, which we shall address
later in the chapter, is that with programmed I/O, input from the keyboard is accepted only
under program control. An alternative means must be found to accept unexpected input
from the keyboard.

There is one important application for programmed I/O: alternative methods of I/O
use the I/O module to control I/O operations from outside the CPU, independent of the
CPU, using memory as the intermediate site for the data transfer. Programmed /O is used
by programs in the CPU to send the necessary commands to the I/O modules to set up
parameters for the transfer and to initiate I/O operations. We shall return to this topic in
Section 9.4.

FIGURE 9.4

Programmed 1/0

CHAPTER 9 INPUT/OUTPUT 285

Instruction register

CPU ||—_>
24

Bus

1. CPU executes INPUT 24
instruction. Address 24 is
copied to the I/0 address register.

1/0 address register

R/W »| Keyboard

I/0 module 2. Address 24 is recognized by the
keyboard 1/0 module. A read/write
24 control line indicates that the
instruction is an INPUT.
I/0 data register Buffer

Accumulator

|5

3. A buffer in the 1/0 module holds a
keystroke, in this case ASCII 68,
the letter “D"”. The data is transferred
to the I/O data register.

an<—

4. From there it is copied to
the appropriate accumulator
or general-purpose register,
completing the operation.

9.3 INTERRUPTS

As you know from our previous discussion, there are many circumstances under which
it is important to interrupt the normal flow of a program in the computer to react to
special events. An unexpected user command from the keyboard or other external input,
an abnormal situation, such as a power failure, that requires immediate attention from the
computer, an attempt to execute an illegal instruction, a request for service from a network

P

286

&

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

EXAMPLE

controller, or the completion of an I/O task initiated by the program: all of these suggest
that it is necessary to include some means to allow the computer to take special actions
when required. Interrupt capabilities are also used to make it possible to time share the
CPU between several different programs or program segments at once.

Modern computers provide interrupt capability by providing one or more special
control lines to the central processor known as interrupt lines. For example, the standard
I/O for a modern PC may contain as many as thirty-two interrupt lines, labeled IRQO
through IRQ31. (IRQ stands for Interrupt ReQuest.) The messages sent to the computer
on these lines are known as interrupts. The presence of a message on an interrupt line will
cause the computer to suspend the program being executed and jump to a special interrupt
processing program.

Consider, as an example, the following situation:

In a large, multiuser system there may be hundreds of keyboards being used with the
computer at any given time. Since any of these keyboards could generate input to the
computer at any time, it is necessary that the computer be aware of any key that is struck
from any keyboard in use. This process must take place quickly, before another key is struck
on the same keyboard, to prevent data loss from occurring when the second input is generated.

Theoretically, though impractically, it would be possible for the computer to perform this
task by checking each keyboard for input in rotation, at frequent intervals. This technique
is known as polling. The interval would have to be shorter than the time during which a fast
typist could hit another key. Since there may be hundreds of keyboards in use, this technique
may result in a polling rate of thousands of samples per second. Most of these samples will
not result in new data; therefore, the computer time spent in polling is largely wasted.

This is a situation for which the concept of the interrupt is well suited. The goal
is achieved more productively by allowing the keyboard to notify the CPU by using an
interrupt when it has input. When a key is struck on any keyboard, it causes the interrupt
line to be activated, so that the CPU knows that an I/O device connected to the interrupt
line requires action. Interrupts satisfy the requirement for external input controls, and also
provide the desirable feature of freeing the CPU from waiting for events to occur.

Servicing Interrupts

Since the computer is capable only of executing programs, interrupt actions take the form of
special programs, executed whenever triggered by an interrupt signal. Interrupt procedures
follow the form shown in Figure 9.5.

Specifically, the interrupt causes the temporary suspension of the program in progress.
All the pertinent information about the program being suspended, including the location
of the last instruction executed, and the values of data in various registers, is saved in
a known part of memory, either in a special area associated with the program, known
as the process control block (PCB), or in a part of memory known as the stack area.
This information is known as the program’s context, and will make it possible to restart
the program exactly where it left off, without loss of any data or program state. Many
computers have a single instruction that saves all the critical information at once. The

P

CHAPTER 9 INPUT/OUTPUT 287

FIGURE 9.5
Servicing an Interrupt
Memory Registers
A 1. Before interrupt arrives, program A
is executing. The program counter
Al = _PCh points to the current instruction.
Stack
area
B
Memory Registers
A 2. When the interrupt is received by
the CPU, the current instruction is
AL =—— PC completed, all the registers are
saved in the stack area (or in a
Stacka special area known as a process

area = control block). The PC is loaded
M——E—IPC with the starting location of program
B, the interrupt handler program.

This causes a jump to program B,
which becomes the executing program.

Memory Registers
A 3. When the interrupt routine is complete,
the registers are restored, including the

Al = PC

program counter, and the original
Stack program resumes exactly where it left off.
ac g |

memory belonging to the original program is kept intact. The computer then branches to
a special interrupt handler program elsewhere in memory; the interrupt handler program
is also known as an interrupt routine. The interrupt handler program determines the
appropriate course of action. This process is known as servicing the interrupt. Since many
interrupts exist to support I/0O devices, most of the interrupt handling programs are also
known as device drivers.

When the interrupt routine completes its task, it normally would return control
to the interrupted program, much like a subroutine. Original register values would be
restored, and the original program would resume execution exactly where it left off, and
in its identical state, since all the registers were restored to their original values. There
are some circumstances when this is not the case, however, since actions taken by the
interrupt routine may make a difference in what the original program is supposed to do.
For example, a printer interrupt indicating that the printer is out of paper would require a
different action by the original program (perhaps a message to the screen telling the user to
load more paper); it would not be useful for the program to send more characters!

P

&

288 PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

Intuitively, the servicing of interrupts works just the way that you would expect.
Suppose that you were giving a speech in one of your classes, and someone in the class
interrupts you with a question. What do you do? Normally, you would hold your current
thought and answer the question. When you finish answering the question, you return
to your speech just where you left off, pick up the thought, and continue as though no
interrupt had occurred. This would be your normal interrupt servicing routine. Suppose,
however, that the interrupt is the bell ending class or the instructor telling you that you
have run out of time. In this case, your response is different. You would not return to your
speech. Instead, you might do a quick wrap-up followed by an exit.

In other words, you would react in a way quite similar to the way in which the interrupt
servicing routines work.

The Uses of Interrupts

EXAMPLE

The way in which an interrupt is used depends on the nature of the device. You’ve already
seen that externally controlled inputs are best handled by generating interrupts whenever
action is required. In other cases, interrupts occur when some action is completed. This
section introduces several different ways in which interrupts are used.

THE INTERRUPT AS AN EXTERNAL EVENT NOTIFIER As previously discussed,
interrupts are useful as notifiers to the CPU of external events that require action. This frees
the CPU from the necessity of performing polling to determine that input data is waiting.

Keyboard input can be processed using a combination of programmed 1/0 and interrupts.
Suppose a key is struck on the keyboard. This causes an interrupt to occur. The current
program is suspended, and control is transferred to the keyboard interrupt handler program.

FIGURE 9.6
Using a Keyboard Handler Interrupt

Interrupt handler
Original program

executing
Interrupt
occurs > Suspended ¢
Input character
Special
character?
Resume
execution .
Take required
* action

EXAMPLE

EXAMPLE

CHAPTER 9 INPUT/OUTPUT 289

The keyboard interrupt handler first inputs the character, using programmed /0, and
determines what character has been received. It would next determine if the input is
one that requires special action. If so, it would perform the required action, for example,
suspending the program or freezing the data on the screen. Otherwise, it would pass the input
data to the program expecting input from that keyboard. Normally, the input character would
be stored in a known memory location, ready for the program to use when it is reactivated.

When the action is complete, that is, when the interrupt has been serviced, the computer
normally restores the register values and returns control to the suspended program, unless
the interrupt request specifies a different course of action. This would be the case, for
example, if the user typed a command to suspend the program being run.

Figure 9.6 shows the steps in processing a keyboard input interrupt.

A real-time system is a computer system used primarily to measure external events that
happen in “real time’’; that is, the event, when it occurs, requires processing quickly because
the data is of critical time-sensitive value.

As an example, consider a computer system that monitors the coolant temperature from
the core of a power plant nuclear reactor. The temperature is transmitted once a minute by
a temperature measurement transducer to the computer.

In this particular case, the transducer input is expected, and, when it occurs, requires
immediate evaluation. It is reasonable to assume, however, that the computer system is to
be used for other purposes, and it is not desirable to tie up the CPU in an input loop waiting
for the transducer data to arrive.

This is a perfect application for interrupts. The transducer input is assigned to an inter-
rupt. The interrupt service routine in this case is used to process the transducer input data.
When the interrupt occurs, the interrupt routine evaluates the input. If everything is normal,
the routine returns control to whatever the computer was doing. In an emergency, the interrupt
routine would transfer control instead to the program that handles emergency situations.

THEINTERRUPT ASACOMPLETIONSIGNAL Thekeyboard and transducer examples
demonstrate the usefulness of the interrupt as a means for the user to control the computer
from an input device, in this case the keyboard or transducer. Let us next consider the
interrupt technique as a means of controlling the flow of data to an output device. Here,
the interrupt serves to notify the computer of the completion of a particular course
of action.

As noted previously, the printer is a slow output device. The computer is capable of outputting
data to the printer much faster than the printer can handle it. The interrupt can be used to
control the flow of data to the printer in an efficient way.

The computer sends one block of data at a time to the printer. The size of the block
depends on the type of printer and the amount of memory installed in the printer. When the
printer is ready to accept more data, it sends an interrupt to the computer. This interrupt
indicates that the printer has completed printing the material previously received and is
ready for more.

290

&

PART THREE COMPUTER ARCHITECTURE AND HARDWARE OPERATION

In this case, the interrupt capability prevents the loss of output, since it allows the
printer to control the flow of data to a rate that the printer can accept. Without the interrupt
capability, it would be necessary to output data at a very slow rate to assure that the computer
did not exceed the ability of the printer to accept output. The use of an interrupt also allows
the CPU to perform other tasks while it waits for the printer to complete its printing.

By the way, you might notice that the printer could use a second, different interrupt as a
way of telling the computer to stop sending data temporarily when the printer’s buffer fills up.

This application is diagrammed in Figure 9.7. Another application of the interrupt as
a completion signal is discussed in Section 9.4, as an integral part of the direct memory
access technique.

THE INTERRUPT AS A MEANS OF ALLOCATING CPU TIME A third major applica-
tion for interrupts is to use the interrupt as a method of allocating CPU time to different
programs or threads that are sharing the CPU. (Threads are small pieces of a program that
can be executed independently, such as the spell checker in a word processing program.)

Since the CPU can only execute one sequence of instructions at a time, the ability to
time share multiple programs or threads implies that the computer system must share the
CPU by allocating small segments of time to each program or thread, in rapid rotation
among them. Each program sequence is allowed to execute some instructions. After a
certain period of time, that sequence is interrupted and relinquishes control to a dispatcher
program within the operating system that allocates the next block of time to another
sequence. This is illustrated in Figure 9.8.

FIGURE 9.7
Using a Print Handler Interrupt

Original program

executing Print
t interrupt handler
Software interrupt
to print handler —> Suspended ¢ ¢

Fill printer buffer

¥

Resume
other work

Printer ready
interrupt =

More
to print?

Continue

CHAPTER 9 INPUT/OUTPUT 291

FIGURE 9.8

Using an Interrupt for Time Sharing

Program 1 Program 2 Operating system
dispatcher program
Executing
Time *
Clock
- interrupt SHERCIEY *

Select
next program

One *—l
quantum

Resume
executing
program 2
y
Clock
interrupt — SUSlDended—l

Select
next program

'

The system cannot count on an instruction sequence relinquishing control voluntarily,
since a program caught in an infinite loop would not be able to do so. Instead, the computer
system provides an internal clock that sends an interrupt periodically to the CPU. The
time between interrupt pulses is known as a quantum, and represents the time that each
program or thread will have allotted to it. When the clock interrupt occurs, the interrupt
routine returns control to the operating system, which then determines which program
or thread will receive CPU time next. The interrupt is a simple but effective method for
allowing the operating system to share CPU resources among several programs at once.

Time sharing is discussed in more depth in Chapters 15 and 18.

THE INTERRUPT AS AN ABNORMAL EVENT INDICATOR The fourth major use
for interrupts is to handle abnormal events that affect operation of the computer system
itself. Under certain conditions, we would like the computer to respond with a specific
course of action, quickly and effectively. This usage is similar to that of other external input
events, but in this case, the events are directed at problems or special conditions within the
computer system itself.

One obvious example of an external event requiring special computer action is power
failure. Most computers provide enough internal power storage to save the work that
is being performed and to shut down gracefully, provided that the computer has quick
notification of the power failure. A power line monitor that connects to the interrupt
facility provides this capability. T