
CHAPTER 5

REPRESENTING NUMERICAL
DATA

Thomas Sperling, adapted by Benjamin Reece

5.0 INTRODUCTION
As we have noted previously, the computer stores all data and program instructions
in binary form, using only groups of zeros and ones. No special provision is made
for the storage of the algebraic sign or decimal point that might be associated with
a number; all responsibility for interpretation of those zeros and ones is left to the
programmers whose programs store and manipulate those binary numbers. Thus the
binary numbers in a computer might represent characters, numbers, graphics images,
video, audio, program instructions, or something else.

The ability of a computer to manipulate numbers of various kinds is, of course, of
particular importance to users. In Chapter 4, we observed that nearly every high-level
computing language provides a method for storage, manipulation, and calculation of
signed integer and real numbers. This chapter discusses methods of representing and
manipulating these numbers within the zeros-and-ones constraint of the computer.

We saw in Chapter 3 that unsigned integer numbers can be represented directly in
binary form, and this provides a clue as to how we might represent the integer data type
in the computer. There is a significant limitation, however: we have yet to show you
a sign-free way of handling negative numbers that is compatible with the capabilities
of the computer. In this chapter, we explore several different methods of storing and
manipulating integers that may encompass both positive and negative numbers.

Also, as you know, it is not always possible to express numbers in integer form.
Real, or floating point, numbers are used in the computer when the number to be
expressed is outside of the integer range of the computer (too large or too small) or
when the number contains a decimal fraction.

Floating point numbers allow the computer to maintain a limited, fixed number
of digits of precision together with a power that shifts the point left or right within the
number to make the number larger or smaller, as necessary. The range of numbers that
the computer can handle in this way is huge. In a personal computer, for example, the
range of numbers that may be expressed this way may be ±[10−38 < number <10+38]
or more.

Performing calculations with floating point numbers provide an additional chal-
lenge. There are trade-offs made for the convenience of using floating point numbers:
a potential loss of precision, as measured in terms of significant digits, larger storage
requirements, and slower calculations. In this chapter we will also explore the properties
of floating point numbers, show how they are represented in the computer, consider
how calculations are performed, and learn how to convert between integer and floating
point representations. We also investigate the importance of the trade-offs required
for the use of floating point numbers and attempt to come up with some reasonable
ground rules for deciding what number format to specify in various programming
situations.

137

138 PART TWO DATA IN THE COMPUTER

We remind you that numbers are usually input as characters and must be converted
to a numerical format before they may be used in calculations. Numbers that will not be
used in calculations, such as zip codes or credit card numbers, are simply manipulated as
characters.

5.1 UNSIGNED BINARY AND BINARY-CODED
DECIMAL REPRESENTATIONS

In conventional notation, numbers can be represented as a combination of a value, or
magnitude, a sign, plus or minus, and, if necessary, a decimal point. As a first step in our
discussion, let’s consider two different approaches to storing just the value of the number
in the computer.

The most obvious approach is simply to recognize that there is a direct binary equivalent
for any decimal integer. We can simply store any positive or unsigned whole number as
its binary representation. This is the approach that we already discussed in Chapter 3. The
range of integers that we can store this way is determined by the number of bits available.
Thus, an 8-bit storage location can store any unsigned integer of value between 0 and 255,
a 16-bit storage location, 0–65535. If we must expand the range of integers to be handled,
we can provide more bits. A common way to do this is to use multiple storage locations. In
Figure 5.1, for example, four consecutive 1-byte storage locations are used to provide 32
bits of range. Used together, these four locations can accept 232, or 4,294,967,296 different
values.

The use of multiple storage locations to store a single binary number may increase the
difficulty of calculation and manipulation of these numbers because the calculation may
have to be done one part at a time, possibly with carries or borrows between the parts,
but the additional difficulty is not unreasonable. Most modern computers provide built-in

FIGURE 5.1

Storage of a 32-bit Data Word

24 23 16 15 8 7

32-bit Data word

Memory
location 1 byte bit

31
bit
0

M

M + 1M

M + 2M

M + 3M

M + 4M

Most significant
bits (31-24)

Least significant
bits (7-0)

Next data item

bits 23-16

bits 15-8

CHAPTER 5 REPRESENTING NUMERICAL DATA 139

FIGURE 5.2

Value Range for Binary Versus Binary-coded Decimal

4
8
12
16
20
24
32
64

0–9
0–99
0–999
0–9,999
0–99,999
0–999,999
0–99,999,999
0–(1016–1)

No. of Bits BCD range

1 digit
2 digits
3 digits
4 digits
5 digits
6 digits
8 digits
16 digits

0–15
0–255
0–4,095
0–65,535
0–1 Million
0–16 Million
0–4 Billion
0–16 Quintillion

1+ digit
2+ digits
3+ digits
4+ digits
6 digits
7+ digits
9+ digits
19+ digits

Binary range

instructions that perform data calculations 32 bits or 64 bits at a time, storing the data
automatically in consecutive bytes. For other number ranges, and for computers without
this capability, these calculations can be performed using software procedures within the
computer.

An alternative approach known as binary-coded decimal (BCD), may be used in some
applications. In this approach, the number is stored as a digit-by-digit binary representation
of the original decimal integer. Each decimal digit is individually converted to binary. This
requires 4 bits per digit. Thus, an 8-bit storage location could hold two binary-coded
decimal digits—in other words, one of one hundred different values from 00 to 99. For
example, the decimal value 68 would be represented in BCD as 01101000. (Of course you
remember that 01102 = 610 and 10002 = 810.) Four bits can hold sixteen different values,
numbered 0 to F in hexadecimal notation, but with BCD the values A to F are simply not
used. The hexadecimal and decimal values for 0 through 9 are equivalent.

The table in Figure 5.2 compares the decimal range of values that can be stored in
binary and BCD forms. Notice that for a given number of bits the range of values that
can be held using the binary-coded decimal method is substantially less than the range
using conventional binary representation. You would expect this because the values A–F
are being thrown away for each group of 4 bits. The larger the total number of bits, the
more pronounced the difference. With 20 bits, the range for binary is an entire additional
decimal digit over the BCD range.

Calculations in BCD are also more difficult, since the computer must break the number
into the 4-bit binary groupings corresponding to individual decimal digits and use base 10
arithmetic translated into base 2 to perform calculations. In other words, the calculation
for each 4-bit grouping must be treated individually, with arithmetic carries moving from
grouping to grouping. Any product or sum of any two BCD integers that exceeds 9 must
be reconverted to BCD each time to perform the carries from digit to digit.

140 PART TWO DATA IN THE COMPUTER

EXAMPLE
One method of performing a ‘‘simple’’ one- by two-digit multiplication is shown as an
example in Figure 5.3. In the first step, each digit in the multiplicand is multiplied by the

FIGURE 5.3

A Simple BCD Multiplication

76
� 7

42
49

432
 13

532

0111 0110
0111

101010
110001

0100 0010
+ 0100 1001

0100 1101 0010
+ 0001 0011

0101 0011 0010

1

= 532 in BCD

bcd

bcd

bin

bin

adjust
carry

convert partial
sums to BCD

bcd

bcd

convert 13
back to BCD

single-digit multiplier. This yields the result 7 × 6
= 42 in the units place and the result 7 × 7 = 49
in the 10’s place. Numerically, this corresponds to
the result achieved performing the multiplication
in decimal, as is shown at the left of the diagram.

To continue, the binary values for 42 and
49 must be converted back to BCD. This is done
in the second step. Now the BCD addition takes
place. As in the decimal version, the sum of 9 and
4 results in a carry. The binary value 13 must be
converted to BCD 3, and the 1 added to the value
4 in the hundreds place. The final result is BCD
value 532.

If the number contains a decimal point, the same approach can be used, but the
application program must keep track of the decimal point’s location. For example, many
business applications have to maintain full accuracy for real numbers. In many cases, the
real numbers being used represent dollars and cents figures. You are aware from Chapter 3
that rational decimal real numbers do not necessarily remain so when converted into
binary form. Thus, it is possible that a number converted from decimal to binary and back
again may not be exactly the same as the original number. You would not want to add two
financial numbers and have the result off by a few cents. (In fact, this was a problem with
early versions of spreadsheet programs!)

For this reason, business-oriented high-level languages such as COBOL provide
formats that allow the user to specify the number of desired decimal places exactly. Large
computers support these operations by providing additional instructions for converting,
manipulating, and performing arithmetic operations on numbers that are stored in a BCD
format.

EXAMPLE
IBM zSeries computers support numbers stored in a BCD format called packed decimal
format, shown in Figure 5.4. Each decimal digit is stored in BCD form, two digits to a byte.
The most significant digit is stored first, in the high-order bits of the first byte. The sign is
stored in the low-order bits of the last byte. Up to thirty-one digits may be stored. The binary
values 1100 and 1101 are used for the sign, representing ‘‘+’’ and ‘‘−’’ respectively. The
value 1111 can be used to indicate that the number is unsigned. Since these values do not
represent any valid decimal number, it is easy to detect an error, as well as to determine the
end of the number. As we noted earlier, the location of the decimal point is not stored and
must be maintained by the application program. Intel CPUs provide a more limited packed
format that holds two digits (00–99) in a single byte. As an example, the decimal number
-324.6 would be stored in packed decimal form as

0000 0011 0010 0100 0110 1101

CHAPTER 5 REPRESENTING NUMERICAL DATA 141

FIGURE 5.4

Packed Decimal Format

Sign

1100 or
1101 or
1111

Most
significant

digit

4 bits 4 bits
Up to 31 digits (16 bytes)

The leading 0s are required to make the number fit exactly into 3 bytes. IBM provides
additional formats that store data one digit to a byte, but provides no instructions for
performing calculations in this format. This format is used primarily as a convenience for
conversion between text and packed decimal format. IBM also provides a compressed version
of its packed decimal format to save storage space.

Even with computer instructions that perform BCD arithmetic, BCD arithmetic is
nearly always much slower. As an alternative, some computers convert each BCD number
to binary form, perform the calculation, and then convert the result back to BCD.

Despite its drawbacks, binary-coded decimal representation is sometimes useful,
especially in business applications, where it is often desirable to have an exact digit-for-digit
decimal equivalent in order to mimic decimal arithmetic, as well as to maintain decimal
rounding and decimal precision. Translation between BCD and character form is also easier,
since the last 4 bits of ASCII, EBCDIC, and Unicode numeric character forms correspond
exactly to the BCD representation of that digit. Thus, to convert from alphanumeric form
to BCD you simply chop off everything but the rightmost 4 bits of the character to get its
BCD value. This makes BCD an attractive option when the application involves a lot of
input and output, but limited calculation. Many business applications fit this description.
In most cases, though, binary representation is preferred and used.

5.2 REPRESENTATIONS FOR SIGNED INTEGERS
With the shortcomings of BCD, it shouldn’t surprise you that integers are nearly always
stored as binary numbers. As you have already seen, unsigned integers can be converted
directly to binary numbers and processed without any special care. The addition of a sign,
however, complicates the problem, because there is no obvious direct way to represent the
sign in binary notation. In fact, there are several different ways used to represent negative
numbers in binary form, depending on the processing that is to take place. The most com-
mon of these is known as 2’s complement representation. Before we discuss 2’s complement
representation, we will take a look at two other, simpler methods: sign-and-magnitude
representation and 1’s complement representation. Each of these latter methods has
some serious limitations for computer use, but understanding these methods and their
limitations will clarify the reasoning behind the use of 2’s complementation.

142 PART TWO DATA IN THE COMPUTER

Sign-and-magnitude Representation

FIGURE 5.5

Examples of Sign-and-Magnitude
Representation

0100101

37
�

�

�

1100101

37

�

0000000000000001
(�1)

1000000000000001
(�1)

1111111111111111
(�32767)

In daily usage, we represent signed integers by a plus or
minus sign and a value. This representation is known, not
surprisingly, as sign-and-magnitude representation.

In the computer we cannot use a sign, but must restrict
ourselves to 0’s and 1’s. We could select a particular bit,
however, and assign to it values that we agree will represent
the plus and minus signs. For example, we could select the
leftmost bit and decide that a 0 in this place represents a plus
sign and a 1 represents a minus. This selection is entirely
arbitrary, but if used consistently, it is as reasonable as any
other selection. In fact, this is the representation usually
selected. Figure 5.5 shows examples of this representation.

Note that since the leftmost digit is being used as a
sign, it cannot represent any value. This means that the positive range of the signed integer
using this technique is one-half as large as the corresponding unsigned integer of the same
number of bits. On the other hand, the signed integer also has a negative range of equal
size to its positive range, so we really haven’t lost any capability, but have simply shifted it
to the negative region. The total range remains the same, but is redistributed to represent
numbers both positive and negative, though in magnitude only half as large.

Suppose 32 bits are available for storage and manipulation of the number. In this case,
we will use 1 bit for the sign and 31 bits for the magnitude of the number. By convention,
the leftmost, or most significant, bit is usually used as a sign, with 0 corresponding to a
plus sign and 1 to a minus sign. The binary range for 32 bits is 0 to 4,294,967,295; we can
represent the numbers −2, 147, 483, 647 to +2,147,483,647 this way.

There are several inherent difficulties in performing calculations when using
sign-and-magnitude representation. Many of these difficulties arise because the value of
the result of an addition depends upon the signs and relative magnitudes of the inputs.
This can be easily seen from the following base 10 examples. Since the numbers are exactly
equivalent, the same problem of course occurs with binary addition.

EXAMPLE
Consider the base 10 sum of 4 and 2:

4
+ 2

6

The sum of 4 and −2, however, has a different numerical result:

4
− 2

2

Notice that the addition method used depends on the signs of the operands. One
method is used if both signs agree; a different method is used if the signs differ. Even worse,

CHAPTER 5 REPRESENTING NUMERICAL DATA 143

the presence of a second digit that can result in a carry or borrow changes the result yet
again:

2
− 4

− 2

But
12
−4
8

Interestingly enough, we have been so well trained that we alter our own mental
algorithm to fit the particular case without even thinking about it, so this situation
might not even have crossed your mind. The computer requires absolute definition
of every possible condition, however, so the algorithm must include every possibility;
unfortunately, sign-and-magnitude calculation algorithms are complex and difficult to
implement in hardware.

In addition to the foregoing difficulty, there are two different binary values for 0,

00000000 and 10000000

representing +0 and −0, respectively. This seems like a minor annoyance, but the system
must test at the end of every calculation to assure that there is only a single value for 0.
This is necessary to allow program code that compares values or tests a value for 0 to work
correctly. Positive 0 is preferred because presenting −0 as an output result would also be
confusing to the typical user.

The one occurrence where sign-and-magnitude is a useful representation is when
binary-coded decimal is being used. Even though the calculation algorithms are necessarily
complex, other algorithms for representing signed integers that you will be introduced to in
this chapter are even more impractical when using BCD. Furthermore, as we have already
discussed, BCD calculation is complex in any case, so the additional complexity that results
from handling sign-and-magnitude representations is just more of the same.

With BCD, the leftmost bit can be used as a sign, just as in the case of binary. With
binary, however, using a sign bit cuts the range in half; the effect on range is much less
pronounced with BCD. (Remember, though, that BCD already has a much smaller range
than binary for the same number of bits.) The leftmost bit in an unsigned BCD integer only
represents the values 8 or 9; therefore, using this bit as a sign bit still allows the computer 3
bits to represent the leftmost digit as a number within the range 0–7.

As an example, the range for a signed 16-bit BCD integer would be

−7999 ≤ value ≤ +7999.

Nine’s Decimal and 1’s Binary Complementary Representations

For most purposes, computers use a different method of representing signed integers
known as complementary representation. With this method, the sign of the number is a
natural result of the method and does not need to be handled separately. Also, calculations
using complementary representation are consistent for all different signed combinations

144 PART TWO DATA IN THE COMPUTER

of input numbers. There are two forms of complementary representation in common use.
One, known as the radix complement, is discussed in the next section. In this section, we
will introduce a representation known as diminished radix complementary representation,
so called because the value used as a basis for the complementary operation is diminished by
one from the radix, or base. Thus, base 10 diminished radix complementary representation
uses the value 9 as its basis, and binary uses 1. Although the computer obviously uses the 1’s
representation, we will introduce the 9’s representation first, since we have found that it is
easier for most students to understand these concepts in the more familiar decimal system.

NINE’S DECIMAL REPRESENTATION Let us begin by considering a different means
of representing negative and positive integers in the decimal number system. Suppose that
we manipulate the range of a three-digit decimal number system by splitting the three-digit
decimal range down the middle at 500. Arbitrarily, we will allow any number between 0
and 499 to be considered positive. Positive numbers will simply represent themselves. This
will allow the value of positive numbers to be immediately identified. Numbers that begin
with 5, 6, 7, 8, or 9 in the most significant digit will be treated as representations of negative
numbers. Figure 5.6 shows the shift in range.

One convenient way to assign a value to the negative numbers is to allow each digit
to be subtracted from the largest numeral in the radix. Thus, there is no carry, and each
digit can be converted independently of all others. Subtracting a value from some standard
basis value is known as taking the complement of the number. Taking the complement of
a number is almost like using the basis value as a mirror. In the case of base 10 radix, the
largest numeral is 9; thus, this method is called 9’s complementary representation.

FIGURE 5.6

Range Shifting Decimal Integers

Representation 500 999 0

-499 -000

499

4990Number being
represented − +Increasing value

The facing page shows several examples of this
technique.

If we now use the 9’s complement technique to
assign the negative values to the chart in Figure 5.6,
you see that 998 corresponds to a value of−1 and 500
to the value −499. This results in the relationship
shown in Figure 5.7.

An important consideration in the choice of
a representation is that it is consistent with the
normal rules of arithmetic. For the representation
to be valid, it is necessary that, for any value within
the range,

FIGURE 5.7

Addition as a Counting Process

Representation

500 649 899 999

-499 -350 -100 -000

499

499

0

0

Number being
represented

+250

+250

170 420

170 420
+250

+250

−(− value) = value

Simply stated, this says that if we complement
the value twice, it should return to its original
value. Since the complement is just

comp = basis − value

then complementing twice,

basis− (basis− value) = value

which confirms that this requirement is met.

CHAPTER 5 REPRESENTING NUMERICAL DATA 145

EXAMPLES
Find the 9’s complementary representation for the three-digit number −467.

999
− 467

532

532 represents the value for −467. Notice that the three-digit value range is limited to
0–499, since any larger number would start with a digit of 5 or greater, which is the indicator
for a negative number.

Find the 9’s complementary representation for the four-digit number −467.

9999
−467
9532

Notice that in this system, it is necessary to specify the number of digits, or word size, being
used. In a four-digit representation, the number (0)532 represents a positive integer, since
it is less than 4999 in value. Care is required in maintaining the correct number of digits.

What is the sign-and-magnitude value of the four-digit number represented in 9’s
complement by 3789?

In this case, the leftmost digit is in the range 0–4. Therefore, the number is positive,
and is already in correct form. The answer is +3789.

This example emphasizes the difference between the representation of a number
in complementary form and the operation of taking the complement of a number. The
representation just tells us what the number looks like in complementary form. The operation
of finding the complement of a number consists of performing the steps that are necessary
to change the number from one sign to the other. Note that if the value represents a negative
number, it is necessary to perform the operation if we wish to convert the number into
sign-and-magnitude form.

What is the sign-and-magnitude value of the four-digit number represented by 9990?
This value is negative. To get the sign-and-magnitude representation for this number,

we take the 9’s complement:

9999
−9990

9

Therefore, 9990 represents the value −9.

146 PART TWO DATA IN THE COMPUTER

Next, let’s consider the operation of addition when the numbers being added are
in 9’s complementary form. When you studied programming language, you learned that
modular arithmetic could be used to find the remainder of an integer division. You recall
that in modular arithmetic, the count repeats from 0 when a limit, called the modulus, is
exceeded. Thus, as an example, 4 mod 4 has the value 0 and 5 mod 4 has the value 1.

The 9’s complement scale shown in Figure 5.6 shares the most important characteristic
of modular arithmetic; namely, in counting upward (from left to right on the scale), when
999 is reached, the next count results in a modular rotation to a value of 0. (Notice that
when you reach the right end of the scale, it continues by flowing around to the left end.)

Counting corresponds to addition; thus, to add a number to another is simply to count
upward from one number by the other. This idea is illustrated in Figure 5.7. As you can see
from the examples in this diagram, simple additions are straightforward and work correctly.
To understand how this process works in a ‘‘wraparound’’ situation, consider the example
shown in Figure 5.8. As you can see in this case, adding 699 to the value 200 leads to the posi-
tion 899 by wrapping around the right end. Since 699 is equivalent to−300 and 899 is equiva-
lent to−100, 699+200 is equivalent to (−300)+200, and the result of the addition is correct.

The reason this technique works can also be seen in the diagram. The wraparound is
equivalent to extending the range to include the addition on the scale.

The same final point should also be reached by moving to the left 300 units, which is
equivalent to subtracting 300. In fact, the result is off by 1. This occurs because we have
again picked a scale with two values for 0, namely, 0 for +0 and 999 for −0. This means
that any count that crosses the modulus will be short one count, since 0 will be counted
twice. In this particular example, the count to the right, which is the a addition 200 + 699,

FIGURE 5.8

Addition with Wraparound

Representation

Number being
represented

500

-499

999 0 200

+699

-300
-000

499

499

999

-000

500

-4990 200

899

-100

yielded the correct result, since the modulus
was not crossed. The count to the left, the sub-
traction 200 − 300, is off by one because of the
double zero. We could correct for this situation
on the chart by moving left an additional count
any time the subtraction requires ‘‘borrowing’’
from the modulus. For example, subtracting
200 − 300 requires treating the value 200 as
though it were 1200 to stay within the 0–999
range. The borrow can be used to indicate that
an additional unit should be subtracted.

FIGURE 5.9

Addition with Modulus Crossing Representation

Representation

Number being
represented

500

-499

799

+300

+300

999

-000

499
(1099)

499

0

0-200

99

100

Next, consider the situation shown in
Figure 5.9. In this case, counting to the right,
or adding, also results in crossing the modulus,
so an additional count must be added to obtain
the correct result. This is an easier situation, how-
ever. Since the result of any sum that crosses the
modulus must initially contain a carry digit (the
1 in 1099 in the diagram), which is then dropped
in the modular addition, it is easy to tell when the
modulus has been crossed to the right. We can
then simply add the extra count in such cases.

CHAPTER 5 REPRESENTING NUMERICAL DATA 147

FIGURE 5.10

End-around Carry Procedure

799
100
899

799
300

1099
1

100No end-around carry
End-around carry

This leads to a simple procedure for adding two
numbers in 9’s complementary arithmetic: Add the two
numbers. If the result flows into the digit beyond the spec-
ified number of digits, add the carry into the result. This
is known as end-around carry. Figure 5.10 illustrates the
procedure. Notice that the result is now correct for both
examples.

Although we could design a similar algorithm for
subtraction, there is no practical reason to do so. Instead,
subtraction is performed by taking the complement of the
subtrahend (the item being subtracted) and adding to the

minuend (the item being subtracted from). In this way, the computer can use a single
addition algorithm for all cases.

There is one further consideration. A fixed word size results in a range of some
particular fixed size; it is always possible to have a combination of numbers that adds to a
result outside the range. This condition is known as overflow. If we have a three-digit plus
sign word size in a sign-and-magnitude system, and add 500 to 500, the result overflows,
since 1000 is outside the range. The fourth digit would be evidence of overflow.

It is just as easy to detect overflow in a 9’s complement system, even though the
use of modular arithmetic assures that an extra digit will never occur. In complementary
arithmetic, numbers that are out of range represent the opposite sign. Thus, if we add

300+ 300 = 600 (i.e., −399)

both inputs represent positive numbers, but the result is negative. Then the test for overflow
is this: If both inputs to an addition have the same sign, and the output sign is different,
overflow has occurred.

ONE’S COMPLEMENT The computer can use the binary version of the same method
of representation that we have just discussed. In base 2, the largest digit is 1. Splitting the
range down the middle, as we did before, numbers that begin with 0 are defined to be
positive; numbers that begin with 1 are negative. Since

1 1
− 0 and − 1

1 0

the 1’s complement of a number is performed simply by changing every 0 to a 1 and
every 1 to a 0. How elegantly simple! This exchange of 0s and 1s is also known as
inversion. (Of course, this means that both 000 . . . and 111 . . . represent 0, specifically,
+0 and −0, respectively.) The 1’s complement scale for 8-bit binary numbers is shown in
Figure 5.11.

Addition also works in the same way. To add two numbers, regardless of the implied
sign of either input, the computer simply adds the numbers as though they were unsigned
integers. If there is a carryover into the next bit beyond the leftmost specified bit, 1 is added
to the result, following the usual end-around carry rule. Subtraction is done by inverting
the subtrahend (i.e., changing every 0 to 1 and every 1 to 0) and adding. Overflows are

148 PART TWO DATA IN THE COMPUTER

FIGURE 5.11

One’s Complement Representation

10000000 11111111 00000000

-12710 -010

01111111

12710010

detected in the same way as previously discussed: if both inputs are of the same sign, and
the sign of the result is different, overflow has occurred; the result is outside the range.
Notice that this test can be performed simply by looking at the leftmost bit of the two
inputs and the result.

An important comment about conversion between signed binary and decimal integers
in their complementary form: although the technique used is identical between 9’s
complement decimal and 1’s complement binary, the modulus used in the two systems
is obviously not the same! For example, the modulus in three-digit decimal is 999, with a
positive range of 499. The modulus in 8-bit binary is 11111111, or 25510, with a positive
range of 01111111, or 12710.

This means that you cannot convert directly between 9’s complement decimal and
1’s complement binary. Instead, you must change the number to sign-and-magnitude
representation, convert, and then change the result to the new complementary form. Of
course, if the number is positive, this process is trivial, since the complementary form is the
same as the sign-and-magnitude form. But you must remember to follow this procedure if
the sign is negative. Remember, too, that you must check for overflow to make sure that
your number is still in range in the new base.

Here are several examples of 1’s complement addition and subtraction, together with
the equivalent decimal results:

EXAMPLES
Add

00101101 = 45
00111010 = 58

01100111 = 103

Add the 16- bit numbers

0000000000101101 = 45
1111111111000101 = −58
1111111111110010 = −13

Note that the addend 1111111111000101 is the inversion of the value in the previous
example with eight additional 0s required to fill up 16 bits. The decimal result, −13, is
found by inverting 1111111111110010 to 0000000000001101 to get a positive magnitude
and adding up the bits.

CHAPTER 5 REPRESENTING NUMERICAL DATA 149

EXAMPLES
Add

01101010
11111101
101100111

+1
01101000

=
=

=

106
–2

104
(end-around carry)

Subtract

01101010 = 106
−01011010 = 90

Changing the sign of the addend by inverting

01101010
10100101

100001111
+1

00010000 =16
(end-around carry)

Add

01000000 = 64
+ 01000001 = 65

10000001 = −126
This is an obvious example of overflow. The correct positive result, 129, exceeds the range
for 8 bits. Eight bits can store 256 numbers; splitting the range only allows positive values
0–127.

The overflow situation shown in the last example occurs commonly in the com-
puter,and some high-level languages do not check adequately. In some versions of BASIC,
for example, the sum

16384+ 16386

will show an incorrect result of −32765 or −32766. (The latter result comes from use of a
different complementary representation, discussed in the next section.) What has happened
is that overflow has occurred in a system that uses 16 bits for integer calculations. The
positive range limit for 16 bits is +32767 (a 0 for the sign plus fifteen 1s). Since the sum
of 16384 and 16386 is 32770, the calculation overflows. Unfortunately, the user may never
notice, especially if the overflowing calculation is buried in a long series of calculations.
A good programmer takes such possibilities into account when the program is written.
(This type of error caused some embarrassment when it showed up in a recent version of
Microsoft Excel.)

150 PART TWO DATA IN THE COMPUTER

Ten’s Complement and 2’s Complement

FIGURE 5.12

Ten’s Complement Scale

Representation 500 999 0

-500 -001

499

4990Number being
represented − +

TEN’S COMPLEMENT You have seen that
complementary representation can be effective for
the representation and calculation of signed integer
numbers. As you are also aware, the system that
we have described,which uses the largest number
in the base as its complementary reflection point,
suffers from some disadvantages that result from
the dual zero on its scale.

By shifting the negative scale to the right by one, we can create a complementary system
that has only a single zero. This is done by using the radix as a basis for the complementary
operation. In decimal base, this is known as the 10’s complement representation. The use
of this representation will simplify calculations. The trade-off in using 10’s complement
representation is that it is slightly more difficult to find the complement of a number. A
three-digit decimal scale is shown in Figure 5.12. Be sure to notice the differences between
this diagram and Figure 5.6.

The theory and fundamental technique for 10’s complement is the same as that for 9’s
complement. The 10’s complement representation uses the modulus as its reflection point.
The modulus for a three-digit decimal representation is 1000, which is one larger than the
largest number in the system, 999.

Complements are found by subtracting the value from the modulus, in this case,
1000. This method assures a single zero, since (1000 − 0) mod 1000 is zero. Again, as
with the previously discussed complementary methods, notice that the complement of the
complement results in the original value. See the examples on the facing page.

There is an alternative method for complementing a 10’s complement number. First,
observe that

1000 = 999+ 1

You recall that the 9’s complement was found by subtracting each digit from 9:

9′s comp = 999− value

From the previous equation, the 10’s complement can be rewritten as

10′s comp = 1000− value = 999+ 1− value = 999− value+ 1

or, finally,

10′s comp = 9′scomp+ 1

This gives a simple alternative method for computing the 10’s complement value: find
the 9’s complement, which is easy, and add 1 to the result. Either method gives the same
result. You can use whichever method you find more convenient. This alternative method
is usually easier computationally, especially when working with binary numbers, as you
will see.

Addition in 10’s complement is particularly simple. Since there is only a single zero in
10’s complement, sums that cross the modulus are unaffected. Thus, the carry that results

CHAPTER 5 REPRESENTING NUMERICAL DATA 151

EXAMPLES
Find the 10’s complement of 247.

As a reminder, note that the question asks for the 10’s complement of 247, not the 10’s
complement representation. Since 247 represents a positive number, its 10’s complement
representation is, of course, 247.

The 10’s complement of 247 is

1000− 247 = 753

Since 247 is a positive representation, 753 represents the value −247.

Find the 10’s complement of 17.
As in the 9’s complement work, we always have to be conscious of the number of

specified digits. Since all the work so far has assumed that the numbers contain three digits,
let’s solve this problem from that assumption:

1000− 017 = 983

Find the sign and magnitude of the three-digit number with 10’s complement representation:
777

Since the number begins with a 7, it must be negative. Therefore,

1000− 777 = 223

The sign-magnitude value is −223.

when the addition crosses the zero point is simply ignored. To add two numbers in 10’s
complement, one simply adds the digits; any carry beyond the specified number of digits
is thrown away. (Actually, in the computer, the carry is saved in a special ‘‘carry bit,’’ just
in case it is to be used to extend the addition to another group of bits for multiple-word
additions.) Subtraction is again performed by inverting the subtrahend and adding.

The range of numbers in 10’s complement for three digits can be seen in Figure 5.12.
Of particular interest is the fact that the positive and negative regions are of different size:
there is one negative number, 500, that cannot be represented in the positive region. (The
10’s complement of 500 is itself.) This peculiarity is a consequence of the fact that the total
range of numbers is even for any even-numbered base, regardless of word size (in this
case, 10W). Since one value is reserved for zero, the number of remaining values to be split
between positive and negative is odd and, thus, could not possibly be equal.

TWO’S COMPLEMENT. Two’s complement representation for binary is, of course,
similar to 10’s complement representation for decimal. In binary form, the modulus
consists of a base 2 ‘‘1’’ followed by the specified number of 0s. For 16 bits, for example,
the modulus is

10000000000000000

152 PART TWO DATA IN THE COMPUTER

FIGURE 5.13

Two’s Complement Representation

10000000 11111111 00000000

-12810 -110

01111111

12710010

As was true for the 10’s complement, the 2’s complement of a number can be found
in one of two ways: either subtract the value from the modulus or find the 1’s complement
by inverting every 1 and 0 and adding 1 to the result.

The second method is particularly well suited to implementation in the computer, but
you can use whichever method you find more convenient.

Figure 5.13 shows an 8-bit scale for 2’s complement representation.
Two’s complement addition, like 10’s complement addition in decimal, consists of

adding the two numbers mod <the modulus>. This is particularly simple for the computer,
since it simply means eliminating any 1s that don’t fit into the number of bits in the word.
Subtraction and overflow are handled as we have already discussed.

As in 10’s complement, the range is unevenly divided between positive and negative.
The range for 16 bits, for example, is −32768 ≤ value ≤ 32767.

There are many 2’s complement problems at the end of the chapter for you to
practice on.

The use of 2’s complement is more common in computers than is 1’s complement, but
both methods are in use. The trade-off is made by the designers of a particular computer: 1’s
complement makes it easier to change the sign of a number, but addition requires an extra
end-around carry step. One’s complement has the additional drawback that the algorithm
must test for and convert −0 to 0 at the end of each operation. Two’s complement simplifies
the addition operation at the expense of an additional add operation any time the sign
change operation is required.

As a final note, before we conclude our discussion of binary complements, it is useful
to be able to predict approximate sizes of integers that are represented in complementary
form without going through the conversion. A few hints will help:

1. Positive numbers are always represented by themselves. Since they always start
with 0, they are easily identified.

2. Small negative numbers, that is, negative numbers close to 0, have
representations that start with large numbers of 1s. The number −2 in 8-bit 2’s
complement, for example, is represented by

11111110

whereas −128, the largest negative 2’s complement number, is represented by

10000000

This is evident from the scale in Figure 5.13.

3. Since there is only a difference in value of 1 between 1’s and 2’s complement
representations of negative numbers (positive numbers are, of course, identical

CHAPTER 5 REPRESENTING NUMERICAL DATA 153

in both representations), you can get a quick idea of the value in either
representation simply by inverting all the 1s and 0s and approximating the value
from the result.

Overflow and Carry Conditions

We noted earlier in this discussion that overflows occur when the result of a calculation
does not fit into the fixed number of bits available for the result. In 2’s complement, an
addition or subtraction overflow occurs when the result overflows into the sign bit. Thus,
overflows can occur only when both operands have the same sign and can be detected by
the fact that the sign of the result is opposite that of the operands.

Computers provide a flag that allows a programmer to test for an overflow condition.
The overflow flag is set or reset each time a calculation is performed by the computer. In
addition, the computer provides a carry flag that is used to correct for carries and borrows
that occur when large numbers must be separated into parts to perform additions and
subtractions. For example, if the computer has instructions that are capable of adding two
32-bit numbers, it would be necessary to separate a 64-bit number into two parts, add the
least significant part of each, then add the most significant parts, together with any carry
that was generated by the previous addition. For normal, single precision 2’s complement
addition and subtraction the carry bit is ignored.

Although overflow and carry procedures operate similarly, they are not quite the same,
and can occur independently of each other. The carry flag is set when the result of an
addition or subtraction exceeds the fixed number of bits allocated, without regard to sign.
It is perhaps easiest to see the difference between overflow and carry conditions with an
example. This example shows each of the four possible outcomes that can result from the
addition of two 4-bit 2’s complement numbers.

EXAMPLE

(+4) + (+2) (+4) + (+6)
0100 no overflow, 0100 overflow,
0010 no carry 0110 nocarry
0110 = (+6) the result is correct 1010 = (−6) the result is incorrect

(−4) + (−2) (−4) + (−6)
1100 no overflow, 1100 overflow,
1110 carry 1010 Carry
110106 = (−6) ignoring carry, 10110 = (+6) ignoring the carry,

the result is correct the result is incorrect

If an overflow occurs on any but the most significant part of a multiple part addition, it is
ignored (see exercise 5.13).

Other Bases

Any even-numbered base can be split the same way to represent signed integers in that base.
Either the modulus or the largest-digit value can be used as a mirror for the complementary

154 PART TWO DATA IN THE COMPUTER

representation. Odd bases are more difficult: either the range must be split unevenly to
use the leftmost digit as an indicator, or the second left digit must be used together with
the first to indicate whether the represented number is positive or negative. We will not
consider odd bases any further.

Of particular interest are the corresponding 7’s and 8’s complements in octal and 15’s
and 16’s complements in hexadecimal. These correspond exactly to 1’s and 2’s complement
in binary, so you can use calculation in octal or hexadecimal as a shorthand for binary.

As an example, consider four-digit hexadecimal as a substitute for 16-bit binary. The
range will be split down the middle, so that numbers starting with 0–716 are positive and
those starting with 8–F are negative. But note that hex numbers starting with 8–F all have a
binary equivalent with 1 in the leftmost place, whereas 0–7 all start with 0. Therefore, they
conform exactly to the split in 16-bit binary.

You can carry the rest of the discussion by yourself, determining how to take the
complement, and how to add, from the foregoing discussions. There are practice examples
at the end of the chapter.

Finally, note that since binary-coded decimal is essentially a base 10 form, the use of
complementary representation for BCD would require algorithms that analyze the first
digit to determine the sign and then perform 9’s or 10’s complement procedures. Since the
purpose of BCD representation is usually to simplify the conversion process, it is generally
not practical to use complementary representation for signed integers in BCD.

Summary of Rules for Complementary Numbers

The following points summarize the rules for the representation and manipulation of
complementary numbers, both radix and diminished radix, in any even number base. For
most purposes you will be interested only in 2’s complement and 16’s complement:

1. Remember that the word ‘‘complement’’ is used in two different ways. To
complement a number, or take the complement of a number, means to change
its sign. To find the complementary representation of a number means to
translate or identify the representation of the number just as it is given.

2. Positive numbers are represented the same in complementary form as they
would be in sign and magnitude form. These numbers will start with 0, 1, . . .
N/2–1. For binary numbers, positive numbers start with 0, negative with 1.

3. To go from negative sign-and-magnitude to complementary form, or to change
the sign of a number, simply subtract each number from the largest number in
the base (diminished radix) or from the value 100 . . . , where each zero
corresponds to a number position (radix). Remember that implied zeros must be
included in the procedure. Alternatively, the radix form may be calculated by
adding 1 to the diminished radix form. For 2’s complement, it is usually easiest
to invert every digit and add 1 to the result.

4. To get the sign-and-magnitude representation for negative numbers, use the
procedure in (2) to get the magnitude. The sign will, of course, be negative.
Remember that the word size is fixed; there may be one or more implied 0s at the
beginning of a number that mean the number is really positive.

CHAPTER 5 REPRESENTING NUMERICAL DATA 155

5. To add two numbers, regardless of sign, simply add in the usual way. Carries
beyond the leftmost digit are ignored in radix form, added to the result in
diminished radix form. To subtract, take the complement of the subtrahend
and add.

6. If we add two complementary numbers of the same sign and the result is of
opposite sign, the result is incorrect. Overflow has occurred.

5.3 REAL NUMBERS

A Review of Exponential Notation

Real numbers add an additional layer of complexity. Because the number contains a radix
point (decimal in base 10, binary in base 2), the use of complementary arithmetic must
be modified to account for the fractional part of the number. The representation of real
numbers in exponential notation simplifies the problem by separating the number into an
integer, with a separate exponent that places the radix point correctly. As before, we first
present the techniques in base 10, since working with decimal numbers is more familiar to
you. Once you have seen the methods used for the storage and manipulation of floating
point numbers, we will then extend our discussion to the binary number system. This
discussion will include the conversion of floating point numbers between the decimal and
binary bases (which requires some care) and the consideration of floating point formats
used in actual computer systems.

Consider the whole number

12345

If we allow the use of exponents, there are many different ways in which we can
represent this number. Without changing anything, this number can be represented as

12345× 100

If we introduce decimals, we can easily create other possible representations. Each of
these alternative representations is created by shifting the decimal point from its original
location. Since each single-place shift represents a multiplication or division of the value by
the base, we can decrease or increase the exponent to compensate for the shift. For example,
let us write the number as a decimal fraction with the decimal point at the beginning:

0.12345× 105

or, as another alternative,

123450000× 10−4

or even,

0.0012345× 107

Of course, this last representation will be a poor choice if we are limited to five digits
of magnitude,

0.00123× 107

156 PART TWO DATA IN THE COMPUTER

since we will have sacrificed two digits of precision in exchange for the two zeros at the
beginning of the number which do not contribute anything to the precision of the number.
(You may recall from previous math courses that they are known as insignificant digits.)
The other representations do retain full precision, and any one of these representations
would be theoretically as good as any other. Thus, our choice of representation is somewhat
arbitrary and will be based on more practical considerations.

The way of representing numbers described here is known as exponential notation or,
alternatively, as scientific notation. Using the exponential notation for numbers requires
the specification of four separate components to define the number. These are

1. The sign of the number (‘‘+’’, for our original example)

2. The magnitude of the number, known as the mantissa (12345)

3. The sign of the exponent (‘‘+’’)

4. The magnitude of the exponent (3, see below)

Two additional pieces of information are required to complete the picture:

5. The base of the exponent (in this case, 10)

6. The location of the decimal (or other base) radix point

Both these latter factors are frequently unstated, yet extremely important. In the
computer, for example, the base of the exponent is usually, but not always, specified to be
2. In some computers, 16 or 10 may be used instead, and it is obviously important to know
which is being used if you ever have to read the numbers in their binary form. The location
of the decimal point (or binary point, if we’re working in base 2) is also an essential piece of
information. In the computer, the binary point is set at a particular location in the number,
most commonly the beginning or the end of the number. Since its location never changes, it
is not necessary to actually store the point. Instead, the location of the binary point is implied.

Knowing the location of the point is, of course, essential. In the example that
accompanies the rules just given, the location of the decimal point was not specified.
Reading the data suggests that the number might be

+12345× 10+3

which, of course, is not correct if we’re still using the number from our original example.
The actual placement of the decimal point should be

12.345× 103

Let us summarize these rules by showing another example, with each component
specifically marked. Assume that the number to be represented is

−0.0000003579

One possible representation of this number is

sign of mantissa

location of
decimal point

mantissa base exponent

sign of exponent

–0.35790 × 10–6

CHAPTER 5 REPRESENTING NUMERICAL DATA 157

Floating Point Format

As was the case with integers, floating point numbers will be stored and manipulated in the
computer using a ‘‘standard’’, predefined format. For practical reasons, a multiple of 8 bits
is usually selected as the word size. This will simplify the manipulation and arithmetic that
is performed with these numbers.

In the case of integers, the entire word is allocated to the magnitude of the integer and
its sign. For floating point numbers, the word must be divided: part of the space is reserved
for the exponent and its sign; the remainder is allocated to the mantissa and its sign. The
base of the exponent and the implied location of the binary point are standardized as part
of the format and, therefore, do not have to be stored at all.

You can understand that the format chosen is somewhat arbitrary, since you have
already seen that there are many different ways to represent a floating point number.
Among the decisions made by the designer of the format are the number of digits to use, the
implied location of the binary or decimal point, the base of the exponent, and the method
of handling the signs for the mantissa and the exponent.

For example, suppose that the standard word consists of space for seven decimal digits
and a sign:

SMMMMMMM

This format would allow the storage of any integer in the range

−9,999,999 < I < +99,999,999

with full, seven-digit precision. Numbers of magnitude larger than 9,999,999 result in
overflow. Numbers of magnitude less than 1 cannot be represented at all, except as 0.

For floating point numbers, we might assign the digits as follows:

sign of
mantissa

two digits
for the

exponent

the remaining
five digits for
the mantissa

SEEMMMMM

In addition we have to specify the implied location for the decimal point.
In this example we have ‘‘traded’’ two digits of exponent in exchange for the loss of two

digits of precision. We emphasize that we have not increased the number of values that can
be represented by seven digits. Seven digits can represent exactly 10,000,000 different values,
no matter how they are used. We have simply chosen to use those digits differently—to
increase the expressible range of values by giving up precision throughout the range. If we
wish to increase the precision, one option is to increase the number of digits.

There are other possible trades. We could, for example, increase precision by another
digit by limiting the exponent to a single digit. This might not be as limiting as it first
appears. Since each increment or decrement of the exponent changes the number by a
factor equivalent to the base (in this case, 10), a fairly substantial range of numbers can be
accommodated with even a single digit, in this case 109 to 100, or 1 billion to 1.

The sign digit will be used to store the sign of the mantissa. Any of the methods shown
earlier in this chapter for storing the sign and magnitude of integers could be used for

158 PART TWO DATA IN THE COMPUTER

FIGURE 5.14

Excess-50 Representation

Representation 0 49 50

-50 -1

99

490Exponent being
represented − +Increasing value

the mantissa. Most commonly, the mantissa is
stored using sign-magnitude format. A few com-
puters use complementary notation.

Notice that we have made no specific provision
for the sign of the exponent within the proposed
format. We must therefore use some method that
includes the sign of the exponent within the digits
of the exponent itself. One method that you have

already seen for doing this is the complementary representation. (Since the exponent and
mantissa are independent of each other, and are used differently in calculations, there is no
reason to assume that the same representation would be used for both.)

The manipulations used in performing exponential arithmetic allow us to use a simple
method for solving this problem. If we pick a value somewhere in the middle of the possible
values for the exponent, for example, 50 when the exponent can take on values 0 to 99, and
declare that value to correspond to the exponent 0, then every value lower than that will be
negative and those above will be positive. Figure 5.14 shows the scale for this offset technique.

What we have done is offset, or bias, the value of the exponent by our chosen amount.
Thus, to convert from exponential form to the format used in our example, we add the
offset to the exponent, and store it in that form. Similarly, the stored form can be returned
to our usual exponential notation by subtracting the offset.

This method of storing the exponent is known as excess-N notation, where N is
the chosen midvalue. It is simpler to use for exponents than the complementary form,
and appropriate to the calculations required on exponents. In our example we have
used excess-50 notation. This allows us to store an exponential range of −50 to +49,
corresponding to the stored values 00 to 99. We could, if we wished, pick a different offset
value, which would expand our ability to handle larger numbers at the expense of smaller
numbers, or vice versa.

If we assume that the implied decimal point is located at the beginning of the five-digit
mantissa, excess-50 notation allows us a magnitude range of

0.00001 × 10−50 < number < 0.99999 × 10+49

This is an obviously much larger range than that possible using integers, and at the
same time gives us the ability to express decimal fractions. In practice, the range may be
slightly more restricted, since many format designs require that the most significant digit
not be 0, even for very small numbers. In this case, the smallest expressible number becomes
0.10000 × 10−50, not a great limitation. The word consisting of all 0s is frequently reserved
to represent the special value 0.0.

If we were to pick a larger (or smaller) value for the offset, we could skew the range to
store smaller (or larger) numbers. Generally, values somewhere in the midrange seem to
satisfy the majority of users, and there seems little reason to choose any other offset value.

Notice that, like the integer, it is still possible, although very difficult, to create an
overflow by using a number of magnitude too large to be stored. With floating point
numbers it is also possible to have underflow, where the number is a decimal fraction
of magnitude too small to be stored. The diagram in Figure 5.15 shows the regions of
underflow and overflow for our example. Note that in the diagram 0.00001 × 10−50 is
expressed equivalently as 10−55.

CHAPTER 5 REPRESENTING NUMERICAL DATA 159

FIGURE 5.15

Regions of Overflow and Underflow

0
–0.99999 � 1049

Overflow
region

Underflow
region

Overflow
region

0.99999 � 1049–10-55 10-55

There is one more consideration. As you
are already aware, the computer is actually
capable of storing only numbers, no signs or
decimal points. We have already handled the
decimal point by establishing a fixed, implied
point. We must also represent the sign of the
number in a way that takes this limitation into
account.

Here are some examples of floating point
decimal representations. The format used is that shown on page 157: a sign, two digits of
exponent stored excess-50, and five digits of mantissa. The value 0 is used to represent a
‘‘+’’ sign; 5 has been arbitrarily chosen to represent a ‘‘–’’ sign, just as 1 is usually chosen
within the computer for the same purpose. The base is, of course, 10; the implied decimal
point is at the beginning of the mantissa. You should look at these examples carefully to
make sure that you understand all the details of the floating point format.

EXAMPLES

05324657 = 0.24657× 103 = 246.57
54810000 = −0.10000× 10−2 = −0.0010000

(Note that five significant digits are maintained.)

55555555 = −0.55555× 105 = −55555
04925000 = 0.25000× 10−1 = 0.025000

Normalization and Formatting of Floating Point Numbers

The number of digits used will be determined by the desired precision of the numbers.
To maximize the precision for a given number of digits, numbers will be stored whenever
possible with no leading zeros. This means that, when necessary, numbers are shifted
left by increasing the exponent until leading zeros are eliminated. This process is called
normalization.

Our standard format, then, will consist of a mantissa of fixed, predetermined size with
a decimal point placed at a fixed, predetermined location. The exponent will be adjusted so
that numbers will be stored in this format with no leading zeros.

As an example, let us set up a standard format that reflects the storage capabilities
suggested in the previous section. Our format will consist of a sign and five digits, with the
decimal point located at the beginning of the number:

.MMMMM × 10EE

There are four steps required to convert any decimal number into this standard format:

1. Provide an exponent of 0 for the number, if an exponent was not already
specified as part of the number.

2. Shift the decimal point left or right by increasing or decreasing the exponent,
respectively, until the decimal point is in the proper position.

160 PART TWO DATA IN THE COMPUTER

3. Shift the decimal point right, if necessary, by decreasing the exponent, until there
are no leading zeros in the mantissa.

4. Correct the precision by adding or discarding digits as necessary to meet the
specification. We discard or round any digits in excess of the specified precision
by eliminating the least significant digits. If the number has fewer than the
specified number of digits, we supply zeros at the end.

Once we have normalized the number and put it into a standard exponential form, we
can perform a fifth step to convert the result into the desired word format. To do this, we
change the exponent into excess-50 notation and place the digits into their correct locations
in the word.

Conversions between integer and floating point format are similar. The integer is
treated as a number with an implied radix point at the end of the number. In the computer,
an additional step may be required to convert the integer between complementary and
sign-magnitude format to make it compatible with floating point format.

Here are some examples of a decimal to floating point format conversion:

EXAMPLES
Convert the number

246.8035

into our standard format.

1. Adding an exponent makes the number

246.8035× 100

2. We shift the decimal to the left three places, thereby increasing the exponent
by 3:

0.2468035× 103

3. Since the number is already normalized (no leading zeros), there is no adjustment
required.

4. There are seven digits, so we drop the two least significant digits, and the final
exponential representation is

0.24680× 103

5. The exponent is 3, which in excess-50 notation is represented as 53. If we
represent a ‘‘+’’ sign with the digit 0, and a ‘‘–’’ sign with the digit 5 (this choice
is totally arbitrary, but we needed to select some digits since the sign itself cannot
be stored), the final stored result becomes

the sign

05324680

the mantissa

excess-50 exponent

�
�

CHAPTER 5 REPRESENTING NUMERICAL DATA 161

Assume that the number to be converted is

1255× 10−3

1. The number is already in exponential form.

2. We must shift the decimal to the left four places, so the number becomes

0.1255 × 10+1

The positive exponent results from adding 4 to the original −3 exponent.

3. The number is normalized, so no additional adjustment is required.

4. A zero is added to provide five digits of precision. The final result in exponential
form is

0.12550 × 101

5. The exponent in excess-50 notation becomes 51, and the result in word format is

05112550

Assume that the number to be converted is

−0.00000075

1. Converting to exponential notation, we have

−0.00000075 × 100

2. The decimal point is already in its correct position, so no modification is
necessary.

3. Normalizing, the number becomes

−0.75 × 10−6

4. And the final exponential result,

−0.75000 × 10−6

5. In our word format, this becomes

54475000

Although the technique is simple and straightforward, it will still require some practice
for you to feel comfortable with it. We suggest that you practice with a friend, inventing
numbers for each other to put into a standard format.

Some students have a bit of difficulty remembering whether to increase or decrease the
exponent when shifting the number left or right. There is a simple method that may help
you to remember which way to go: when you shift the decimal to the right, it makes the
resulting number larger. (For example, 1.5 becomes 15.) Thus, the exponent must become
smaller to keep the number the same as it was originally.

162 PART TWO DATA IN THE COMPUTER

A Programming Example

Perhaps representing the steps as a pseudocode procedure will clarify these concepts even
further. The procedure in Figure 5.16 converts numbers in normal decimal format to the
floating point format

SEEMMMMM

The implied decimal point is at the beginning of the mantissa, and the sign is stored
as 0 for positive, 5 for negative. The mantissa is stored in sign-magnitude format. The
exponent is stored in excess-50 format. The number 0.0 is treated as a special case, with an
all-zero format.

We suggest that you trace through the procedure carefully, until you understand
each step.

FIGURE 5.16

A Procedure to Convert Decimal Numbers to Floating Point Format

function ConvertToFloat();
//variables used:
real decimalin; //decimal number to be converted
//components of the output
integer sign, exponent, integermantissa;
float mantissa; //used for normalization
integer floatout; //final form of output
{

if (decimalin == 0.0) floatout = 0;
else {

if (decimalin > 0.0) sign = 0;
else sign = 50000000;
exponent = 50;
StandardizeNumber;
floatout = sign + exponent * 100000 + integermantissa;
} //end else

function StandardizeNumber(); {
mantissa = abs (mantissa);
//adjust the decimal to fall between 0.1 and 1.0.

while (mantissa >= 1.00) {
mantissa = mantissa / 10.0;
exponent = exponent + 1;

} //end while
while (mantissa < 0.1) {

mantissa = mantissa * 10.0;
exponent = exponent - 1;

} //end while
integermantissa = round (10000.0 * mantissa)

} //end function StandardizeNumber
} //end ConvertToFloat

CHAPTER 5 REPRESENTING NUMERICAL DATA 163

Floating Point Calculations

Floating point arithmetic is obviously more complex than integer arithmetic. First, the
exponent and the mantissa have to be treated separately. Therefore, each has to be extracted
from each number being manipulated.

ADDITION AND SUBTRACTION You recall that in order to add or subtract numbers
that contain decimal fractions, it is necessary that the decimal points line up. When using
exponential notation, it is thus a requirement that the implied decimal point in both
numbers be in the same position; the exponents of both numbers must agree.

The easiest way to align the two numbers is to shift the number with the smaller
exponent to the right a sufficient number of spaces to increase the exponent to match the
larger exponent. This process inserts insignificant zeros at the beginning of the number.
Note that this process protects the precision of the result by maintaining all the digits of
the larger number. It is the least significant digits of the smaller number that will disappear.

Once alignment is complete, addition or subtraction of the mantissas can take place. It
is possible that the addition or subtraction may result in an overflow of the most significant
digit. In this case, the number must be shifted right and the exponent incremented to
accommodate the overflow. Otherwise, the exponent remains unchanged.

It is useful to notice that the exponent can be manipulated directly in its excess form,
since it is the difference in the two exponents that is of interest rather than the value of the
exponent itself. It is thus not necessary to change the exponents to their actual values in
order to perform addition or subtraction.

EXAMPLE
Add the two floating point numbers

05199520
04967850

Assume that these numbers are formatted using sign-and-magnitude notation for the
mantissa and excess-50 notation for the exponent. The implied decimal point is at the
beginning of the mantissa, and base 10 is used for the exponent.

Shifting the lower mantissa right two places to align the exponent, the two numbers
become

05199520
0510067850

Adding the mantissas, the new mantissa becomes

(1)0019850

We have put the 1 in parentheses to emphasize the fact that it is a carry beyond the
original left position of the mantissa. Therefore, we must again shift the mantissa right one
place and increment the exponent to accommodate this digit:

05210019(850)

Rounding the result to five places of precision, we finally get

05210020

164 PART TWO DATA IN THE COMPUTER

Checking the result,

05199520 = 0.99520× 101 = 9.9520
04967850 = 0.67850× 10−1 = 0.06785

10.01985 = 0.1001985× 102

which converts to the result that we previously obtained.

MULTIPLICATION AND DIVISION Alignment is not necessary in order to perform
multiplication or division. Exponential numbers are multiplied (or divided) by multiplying
(dividing) the two mantissas and adding (subtracting) the two exponents. The sign is dealt
with separately in the usual way. This procedure is relatively straightforward. There are two
special considerations that must be handled, however:

1. Multiplication or division frequently results in a shifting of the decimal point
(e.g., 0.2 × 0.2 = 0.04) and normalization must be performed to restore the
location of the decimal point and to maintain the precision of the result.

2. We must adjust the excess value of the resulting exponent. Adding two
exponents, each of which contains an excess value, results in adding the excess
value to itself, so the final exponent must be adjusted by subtracting the excess
value from the result. Similarly, when we subtract the exponents, we subtract the
excess value from itself, and we must restore the excess value by adding it to the
result.

EXAMPLE
This is seen easily with an example. Assume we have two numbers with exponent 3. Each is
represented in excess-50 notation as 53. Adding the two exponents,

53
53
106

We have added the value 50 twice, and so we must subtract it out to get the correct
excess-50 result:

106
−50
56

3. The multiplication of two five-digit normalized mantissas yields a ten-digit
result. Only five digits of this result are significant, however. To maintain full,
five-digit precision, we must first normalize and then round the normalized
result back to five digits.

EXAMPLE
Multiply the two numbers

05220000
×04712500

CHAPTER 5 REPRESENTING NUMERICAL DATA 165

Adding the exponents and subtracting the offset results in a new, excess-50
exponent of

52+ 47− 50 = 49

Multiplying the two mantissas,

0.20000 × 0.12500 = 0.025000000

Normalizing the result by shifting the point one space to the right decreases the exponent
by one, giving a final result

04825000

Checking our work,

05220000 is equivalent to 0.20000 × 102,
04712500 is equivalent to 0.12500 × 10−3

which multiplies out to

0.0250000000 × 10−1

Normalizing and rounding,

0.0250000000 × 10−1 = 0.25000 × 10−2

which corresponds to our previous result.

Floating Point in the Computer

The techniques discussed in the previous section can be applied directly to the storage of
floating point numbers in the computer simply by replacing the digits with bits. Typically,
4, 8, or 16 bytes are used to represent a floating point number. In fact, the few differences
that do exist result from ‘‘tricks’’ that can be played when ‘‘0’’ and ‘‘1’’ are the only
options.

A typical floating point format might look like the diagram in Figure 5.17. In this
example, 32 bits (4 bytes) are used to provide a range of approximately 10−38 to 10+38.
With 8 bits, we can provide 256 levels of exponent, so it makes sense to store the exponent
in excess-128 notation.

EXAMPLE
Here are some examples of binary floating point format using this notation. Again we have
assumed that the binary point is at the start of the mantissa. The base of the exponent is 2.

0 10000001 11001100000000000000000=
+1.1001100000000000000000

1 10000100 10000111100000000000000=
−1000.0111100000000000000

1 01111110 10101010101010101010101=
−0.0010101010101010101010101

166 PART TWO DATA IN THE COMPUTER

FIGURE 5.17

Typical Floating Point Format

S E E

bit 0 1 8 9 31

MM

Sign of
mantissa

Mantissa
msb Isb

Excess-128
exponent

Thanks to the nature of the binary system, the 23
bits of mantissa can be stretched to provide 24 bits of
precision, which corresponds to approximately seven
decimal digits of precision. Since the leading bit of the
mantissa must be ‘‘1’’ if the number is normalized,
there is no need to store the most significant bit explic-
itly. Instead, the leading bit can be treated implicitly,
similar to the binary point.

There are three potential disadvantages to using
this trick. First, the assumption that the leading bit is
always a ‘‘1’’ means that we cannot store numbers too
small to be normalized, which slightly limits the small

end of the range. Second, any format that may require a ‘‘0’’ in the most significant bit for
any reason cannot use this method. Finally, this method requires that we provide a separate
way to store the number 0.0, since the requirement that the leading bit be a ‘‘1’’ makes a
mantissa of 0.0 an impossibility!

Since the additional bit doubles the available precision of the mantissa in all numbers,
the slightly narrowed range is usually considered an acceptable trade-off. The number 0.0
is handled by selecting a particular 32-bit word and assigning it the value 0.0. Twenty-four
bits of mantissa corresponds to approximately seven decimal digits of precision.

Don’t forget that the base and implied binary point must also be specified.
There are many variations, providing different degrees of precision and exponential

range, but the basic techniques for handling floating point numbers in the computer are
identical to those that we have already discussed in the previous sections of this chapter.

IEEE 754 STANDARD Most current computers conform to IEEE 754 standard formats.
The IEEE Computer Society is a society of computer professionals. Among its tasks, the
IEEE Computer Society develops technical standards for use by the industry. The IEEE
754 standard defines formats for 32-bit and 64-bit floating point arithmetic. Instructions
built into modern computers utilize the standard to perform floating point arithmetic,
normalization, and conversion between integer and floating point representations internally
under program command. The standard also facilitates the portability of programs between
different computers that support the standard.

In addition to the IEEE 754 format, there are a number of older, machine-specific
formats still in use for legacy data. The Macintosh also provides an additional 80-bit
format. Sun UltraSparc and IBM mainframes systems include additional 128-bit formats.
The Intel IA-64 architecture conforms to the IEEE 754 format, but also provides 64-bit
significand/17-bit exponent range capability; the programmer can set individual precision
control and widest-range exponent values in the floating point status register for additional
flexibility.

The standard defines a single-precision floating point format consisting of 32 bits,
divided into a sign, 8 bits of exponent, and 23 bits of mantissa. Since normalized numbers
must always start with a 1, the leading bit is not stored, but is instead implied; this bit is
located to the left of the implied binary point. Thus, numbers are normalized to the form

1.MMMMMMM . . .

CHAPTER 5 REPRESENTING NUMERICAL DATA 167

FIGURE 5.18

IEEE Standard 32-bit Floating Point Value
Definition

0
0
1-254
255
255

± 0
not 0
any
± 0
not 0

Exponent Mantissa Value

0
± 2-126 � 0.M
± 2E-127 � 1.M
±
NaN (Not a Number)

��

The exponent is formatted using excess-127 notation,
with an implied base of 2. This would theoretically allow
an exponent range of 2−127 to 2128. In actuality, the stored
exponent values 0 and 255 are used to indicate special
values, and the exponential range of this format is thus
restricted to

2−126 to 2127

The number 0.0 is defined by a mantissa of 0 together
with the special exponential value 0. The IEEE standard
also allows the values ±∞, very small denormalized
numbers, and various other special conditions. Overall,

the standard allows approximately seven significant decimal digits and an approximate
value range of 10−45 to 1038.

The double-precision floating point format standard works similarly. Sixty-four bits (8
bytes) are divided into a sign, 11 bits of exponent, and 52 bits of mantissa. The same format
is used, with excess-1023 notation for the exponent, an implied base of 2, and an implied
most significant bit to the left of the implied binary point. The double-precision standard
supports approximately fifteen significant decimal digits and a range of more than 10−300

to 10300!
The values defined for all possible 32-bit words are shown in Figure 5.18. The 64-bit

table is similar, except for the limiting exponent of 2047, which results in an excess 1023
offset.

Conversion between Base 10 and Base 2

On occasion, you may find it useful to be able to convert real numbers between decimal
and binary representation. This task must be done carefully. There are two major areas that
sometimes cause students (and others!) difficulty:

1. The whole and fractional parts of numbers with an embedded decimal or binary
point must be converted separately.

2. Numbers in exponential form must be reduced to a pure decimal or binary
mixed number or fraction before the conversion can be performed.

We dealt with the first issue in Section 3.8. Recall from that section that in converting
from one base to another that one must deal with the different multipliers associated with
each successive digit. To the left of the radix point, the multipliers are integer, and there is
a direct relationship between the different bases. To the right of the point, the multipliers
are fractional, and there may or may not be a rational relationship between the multipliers
in the different bases.

The solution is to convert each side of the radix point separately using the techniques
discussed in Chapter 3. As an alternative, you can multiply the entire number in one base
by whatever number is required to make the entire number an integer, and then convert the
number in integer form. When this is complete, however, you must divide the converted
result by that same multiplier in the new base. It is not correct to simply shift the radix point
back, since each shift has a different value in the new base! Thus, if you shift a binary point

168 PART TWO DATA IN THE COMPUTER

right by seven places, you have effectively multiplied the number by 128, and you must
divide the converted number by 128 in the new base. This latter method is best illustrated
with an example.

EXAMPLE
Convert the decimal number 253.75 to binary floating point form.

Begin by multiplying the number by 100 to form the integer value 25375. This is
converted to its binary equivalent 110001100011111, or 1.10001100011111 × 214. The
IEEE 754 floating point equivalent representation for this integer would be

0
Sign

Excess-127
Exponent = 127 + 14

Mantissa (initial 1 is dropped)

10001101 10001100011111

One more step is required to complete the conversion. The result must be divided by
the binary floating point equivalent of 10010 to restore the original decimal value. 10010

converts to binary 11001002, or 010000101100100 in IEEE 754 form. The last step is to
divide the original result by this value, using floating point division. We will omit this step, as
it is both difficult and irrelevant to this discussion. Although this method looks more difficult
than converting the number directly as a mixed fraction, it is sometimes easier to implement
within the computer.

The problem with converting floating point numbers expressed in exponential notation
is essentially the same problem; however, the difficulty is more serious because it looks as
though it should be possible to convert a number, keeping the same exponent, and this is
of course not true.

If you always remember that the exponent actually represents a multiplier of value Be,
where B is the base and e is the actual exponent, then you will be less tempted to make this
mistake. Obviously it is incorrect to assume that this multiplier would have the same value
for a different B.

Instead, it is necessary to follow one of the two solutions just outlined: either reduce
the exponential notation to a standard mixed fraction and convert each side separately, or
use the value Be as a multiplier to be divided in the new base at the end of the conversion.

5.4 PROGRAMMING CONSIDERATIONS
In this chapter you have been exposed to a number of different ways of storing and
manipulating numeric values. It should be of interest to you to consider how a programmer
might make an intelligent choice between the many different options available.

The trade-offs between integer and floating point are clear. Integer calculations are
easier for the computer to perform, have the potential to provide higher precision, and are
obviously much faster to execute. Integer values usually take up fewer storage locations. As
you will see later, it takes a certain amount of time to access each storage location; thus, the
use of fewer storage locations saves time, as well as space.

Clearly, the use of integer arithmetic is preferred whenever possible. Most modern
high-level languages provide two or more different integer word sizes, usually at least a

CHAPTER 5 REPRESENTING NUMERICAL DATA 169

‘‘short’’ integer of 16 bits and a ‘‘long’’ integer of 64 bits. Now that you understand the range
limitations of integer arithmetic, you are in a position to determine whether a particular
variable or constant can use the integer format, and whether special error checking may be
required in your program.

The longer integer formats may require multiple-word calculation algorithms, and as
such are slower to execute than short formats. The short format is preferable when it is
sufficient for the values that you expect. It may also be necessary to consider the limitations
of other systems that the same program may have to operate on.

The use of real numbers is indicated whenever the variable or constant has a fractional
part, whenever the number can take on very large or very small values that are outside of
integer range, or whenever the required precision exceeds the number of different values
that are possible in the longest integer format available to you. (As you’ve seen, most
systems provide a floating point format of very high precision.) Of course, it is sometimes
possible to multiply a mixed number by some multiplier to make it integer, perform the
calculations in integer form, and then divide back. If the number of calculations is large,
and the numbers can be adjusted to operate as integers, this can be a worthwhile option to
consider, especially for the gain in execution speed.

As with integers, it is desirable to use the real number with the least precision that
is sufficient for the task. Higher-precision formats require more storage and usually must
use multiple-word floating point or packed decimal calculation algorithms that are much
slower than the lower-precision formats.

Recall that decimal fractions may convert into irrational binary fractions. For those
languages that provide the capability, the use of packed decimals represents an attractive
alternative to floating point for those business applications where exact calculations
involving mixed decimal numbers are required.

SUMMARY AND REVIEW
Computers store all data as binary numbers. There are a number of different ways to
format these binary numbers to represent the various types of numbers required for
computer processing. Conceptually, the simplest formats are sign-and-magnitude and
binary-coded decimal. Although BCD is sometimes used for business programming, both
of these formatting methods have shortcomings in terms of number manipulation and
calculation.

Unsigned integers can of course be directly represented by their binary equivalents.
Complementary arithmetic is usually the method of choice for signed integers. Nine’s
decimal complement, and its binary equivalent 1’s complement, split the number range in
two, using the upper half of the range to represent negative numbers. Positive numbers
represent themselves. These representations are convenient and especially simple to use,
since the complement is found by subtracting the number from a row of the largest
digits in the base. Binary complements may be found by simply inverting the 0s and
1s in the number. Calculations are a bit more difficult due to the existence of both
positive and negative values for zero, but end-around carry addition may be used for this
purpose.

Ten’s complement and 2’s complement split the range similarly, but use a single value
0 for zero. This requires the use of a complement based on a value one larger than the largest

170 PART TWO DATA IN THE COMPUTER

number in the base for the given number of digits. This ‘‘base value’’ will always consist of a
1 followed by N zeros, where N is the number of digits being used. Complementation may
be taken by inverting the number as before, and adding 1 to the result, or by subtracting
the number from the base value. Calculation is straightforward, using modulo arithmetic.
Most computer arithmetic instructions are based on 2’s complement arithmetic.

Both 1’s and 2’s complement representations have the additional convenience that
the sign of a number may be readily identified, since a negative number always begins
with a ‘‘1.’’ Small negative numbers have large values, and vice versa. Complementary
representations for other even-numbered bases can be built similarly.

Numbers with a fractional part and numbers that are too large to fit within the
constraints of the integer data capacity are stored and manipulated in the computer as real,
or floating point, numbers. In effect, there is a trade-off between accuracy and range of
acceptable numbers.

The usual floating point number format consists of a sign bit, an exponent, and a
mantissa. The sign and value of the exponent are usually represented in an excess-N format.
The base of the exponent is 2 for most systems, but some systems use a different base for
the exponent. The radix point is implied. When possible, the mantissa is normalized.

In some systems the leading bit is also implied, since normalization requires that the
leading bit of the mantissa be a 1.

Floating point numbers are subject to overflow or underflow, where the exponent of
the number is too large or too small to represent, respectively. Zero is treated as a special
case. Sometimes there is also a special representation for ∞.

Addition and subtraction require that the exponents in each number be equal. This
is equivalent to lining up the decimal point in conventional decimal arithmetic. In
multiplication and division, the exponents are added or subtracted, respectively. Special
care must be taken with exponents that are expressed in excess-N notation.

Most computers conform to the format defined in IEEE Standard 754. Other formats
in use include extra-precision formats and legacy formats.

FOR FURTHER READING
The representation and manipulation of integers and real numbers within the computer
is discussed in most computer architecture texts. A particularly effective discussion is
found in Stallings [STAL05]. This discussion presents detailed algorithms and hard-
ware implementations for the various integer operations. A simpler discussion, with
many examples, is found in Lipschutz [LIPS82]. More comprehensive treatments of
computer arithmetic can be found in the two-volume collection of papers edited
by Swartzlander [SWAR90] and in various textbooks on the subject, including those
by Kulisch and Maranker [KUL81] and Spaniol [SPAN81]. A classical reference on
computer algorithms, which includes a substantial discussion on computer arithmetic,
is the book by Knuth [KNUT97]. One additional article of interest is the article
titled ‘‘What Every Computer Scientist Should Know About Floating-Point Arithmetic’’
[GOLD91].

CHAPTER 5 REPRESENTING NUMERICAL DATA 171

KEY CONCEPTS AND TERMS
binary-coded decimal

(BCD)
carry flag
complement
end-around carry
excess-N notation
exponent
exponential notation
floating point format
floating point numbers

integer numbers
integer representation
inversion
mantissa
normalization
1’s complement

representation
overflow
radix point
real numbers

sign-and-magnitude
representation

signed integers
single-precision floating

point format
2’s complement

representation
underflow
unsigned integer
wraparound

READING REVIEW QUESTIONS
5.1 What is the largest unsigned integer that can be stored as a 16-bit number?

5.2 What does BCD stand for? Explain at least two important disadvantages of
storing numbers in BCD format. Offer one advantage for using a BCD format
for storing numbers.

5.3 Give an example that shows the disadvantage of using a sign-and-magnitude
format for manipulating signed integers.

5.4 What is a quick way to identify negative numbers when using 1’s complement
arithmetic?

5.5 How do you change the sign of an integer stored in 1’s complement form? As an
example, the 8-bit representation for the value 19 is 000100112. What is the 1’s
complement representation for −19?

5.6 How do you identify an overflow condition when you add two numbers in 1’s
complement form?

5.7 Explain the procedure for adding two numbers in 1’s complement form. As an
example, convert +38 and −24 to 8-bit 1’s complement form and add them.
Convert your result back to decimal and confirm that your answer is correct.

5.8 If you see a 2’s complement number whose value is 111111102, what rough
estimate can you make about the number?

5.9 How do you change the sign of an integer stored in 2’s complement form? As an
example, the 8-bit representation for the value 19 is 000100112. What is the 2’s
complement representation for −19?

5.10 How do you detect overflow when adding two numbers in 2’s complement form?

5.11 Explain the procedure for adding two numbers in 2’s complement form. As an
example, convert +38 and −24 to 8-bit 2’s complement form and add them.
Convert your result back to decimal and confirm that your answer is correct.

5.12 What is the relationship between complementary representation and sign-
and-magnitude representation for positive numbers?

172 PART TWO DATA IN THE COMPUTER

5.13 Real numbers in a computer (or float, if you prefer), are most often represented
in exponential notation. Four separate components are needed to represent
numbers in this form. Identify each component in the number 1.2345 × 10−5.
What is the advantage of this type of representation, rather than storing the
number as 0.000012345?

5.14 To represent a number in exponential form in the computer, two additional
assumptions must be made about the number. What are those assumptions?

5.15 Exponents are normally stored in excess-N notation. Explain excess-N notation.
If a number is stored in excess-31 notation and the actual exponent is 2+12, what
value is stored in the computer for the exponent?

5.16 When adding two floating point numbers, what must be true for the exponents
of the two numbers?

5.17 The IEEE provides a standard 32-bit format for floating point numbers. The
format for a number is specified as ±1.M × 2E − 127. Explain each part of this
format.

EXERCISES
5.1 Data was stored in the Digital PDP-9 computer using six-digit octal notation.

Negative numbers were stored in 8’s complement form.

a. How many bits does six-digit octal represent? Show that 8’s complement
octal and 2’s complement binary are exactly equivalent.

b. What is the largest positive octal number that can be stored in this machine?

c. What does the number in (b) correspond to in decimal?

d. What is the largest possible negative number? Give your answer in both
octal and decimal form.

5.2 a. Find the 16-bit 2’s complementary binary representation for the decimal
number 1987.

b. Find the 16-bit 2’s complementary binary representation for the decimal
number −1987.

c. From your answer in (b) find the six-digit 16’s complement hexadecimal
representation for the decimal number −1987.

5.3 Data is stored in the R4-D4 computer using eight-digit base 4 notation. Negative
numbers are stored using 4’s complement.

a. What is the sign-and-magnitude value of the following 4’s complement
number?

333332104

Leave your answer in base 4.

b. Add the following eight-digit 4’s complement numbers. Then, show the
sign-and-magnitude values (in base 4) for each of the input numbers and
for your result.

13220231
120000

CHAPTER 5 REPRESENTING NUMERICAL DATA 173

5.4 Convert the decimal number −19575 to a 15-bit 2’s complement binary number.
What happens when you perform this conversion? After the conversion is
complete, what values (base 2 and base 10) does the computer think it has?

5.5 What are the 16-bit 1’s and 2’s complements of the following binary numbers?

a. 10000

b. 100111100001001

c. 0100111000100100

5.6 Add the following decimal numbers by converting each to five-digit 10’s com-
plementary form, adding, and converting back to sign and magnitude.

a.
24379
5098

b.
24379
−5098

c.
−24379

5098

5.7 Subtract the second number from the first by taking the six-digit 10’s complement
of the second number and adding. Convert the result back to sign and magnitude
if necessary.

a.
37968

(−) 24109

b.
37968

(−) − 70925
c.

−10255
(−) −7586

5.8 The following decimal numbers are already in six-digit 10’s complementary
form. Add the numbers. Convert each number and your result to sign and
magnitude, and confirm your results.

a.
1250

772950

b.
899211
999998

c.
970000
30000

174 PART TWO DATA IN THE COMPUTER

5.9 Add the following two 12-bit binary 2’s complement numbers. Then convert
each number to decimal and check the results.

a.
11001101101

111010111011

b.
101011001100
111111111100

5.10 Given the positive number 2468, what is the largest positive digit that you can add
that will not cause overflow in a four-digit decimal, 10’s complement number
system?

5.11 In 12’s complement base 12, how would you know if a number is positive or
negative?

5.12 Most computers provide separate instructions for performing unsigned additions
and complementary additions. Show that for unsigned additions, carry and
overflow are the same. (Hint: Consider the definition of overflow.)

5.13 Consider a machine that performs calculations 4 bits at a time. Eight-bit 2’s
complement numbers can be added by adding the four least significant bits,
followed by the four most significant bits. The leftmost bit is used for the sign,
as usual. With 8 bits for each number, add −4 and −6, using 4-bit binary
2’s complement arithmetic. Did overflow occur? Did carry occur? Verify your
numerical result.

5.14 Add the following 16’s complement hexadecimal numbers

4F09
D3A5

Is your result positive or negative? How do you know? Convert each number to
binary and add the binary numbers. Convert the result back to hexadecimal. Is
the result the same?

5.15 In the Pink-Lemon-8 computer, real numbers are stored in the format

SEEMMMM8

where all the digits, including the exponent, are in octal. The exponent is stored
excess-408. The mantissa is stored as sign and magnitude, where the sign is 0 for
a positive number and 4 for a negative number. The implied octal point is at the
end of the mantissa: MMMM.
Consider the real number stored in this format as

4366621

a. What real number is being represented? Leave your answer in octal.

b. Convert your answer in part (a) to decimal. You may leave your answer in
fractional form if you wish.

c. What does changing the original exponent from 36 to 37 do to the magnitude
of the number? (Stating that it moves the octal point one place to the right or
left is not a sufficient answer.) What would be the new magnitude in decimal?

CHAPTER 5 REPRESENTING NUMERICAL DATA 175

5.16 a. Convert the decimal number 19557 to floating point. Use the format
SEEMMMM. All digits are decimal. The exponent is stored excess-40 (not
excess-50). The implied decimal point is at the beginning of the mantissa.
The sign is 1 for a positive number, 7 for a negative number. Hint: Note
carefully the number of digits in the mantissa!

b. What is the range of numbers that can be stored in this format?

c. What is the floating point representation for −19557?

d. What is the six-digit 10’s complement representation for −19557?

e. What is the floating point representation for 0.0000019557?

5.17 a. Convert the number 123.57 × 1015 to the format SEEMMMM, with the
exponent stored excess-49. The implied decimal point is to the right of the
first mantissa digit.

b. What is the smallest number you can use with this format before underflow
occurs?

5.18 Real numbers in the R4-D4 computer are stored in the format

SEEMMMMM4

where all the digits, including the exponent, are in base 4. The mantissa is stored
as sign and magnitude, where the sign is 0 for a positive number and 3 for a
negative number. The implied quadrinary (base 4!) point is at the beginning of
the mantissa:

.MMMMM

a. If you know that the exponent is stored in an excess-something format,
what would be a good choice of value for ‘‘something?’’

b. Convert the real, decimal number 16.5 to base 4, and show its representation
in the format of the R4-D4 computer. Use the excess value that you
determined in part (a).

5.19 Convert the following binary and hexadecimal numbers to floating point format.
Assume a binary format consisting of a sign bit (negative = 1), a base 2, 8-bit,
excess-128 exponent, and 23 bits of mantissa, with the implied binary point to
the right of the first bit of the mantissa.

a. 110110.0110112

b. −1.11110012

c. −4F7F16

d. 0.000000001111112

e. 0.1100 × 236

f. 0.1100 × 2−36

5.20 For the format used in Exercise 5.5, what decimal number is represented by each
of the following numbers in floating point format?

a. C2F0000016

b. 3C54000016

5.21 Represent the decimal number 171.625 in IEEE 754 format.

176 PART TWO DATA IN THE COMPUTER

5.22 Show the packed decimal format for the decimal number −129975.

5.23 The following decimal numbers are stored in excess-50 floating point format,
with the decimal point to the left of the first mantissa digit. Add them. A 9 is used
as a negative sign. Present your result in standard decimal sign-and-magnitude
notation.

a.

05225731
04833300

b.

05012500
95325750

5.24 Using the same notation as in Exercise 5.9, multiply the following numbers.
Present your answer in standard decimal notation.

a.

05452500
04822200

b.

94650000
94450000

5.25 Using the same format found in Exercise 5.19, add and multiply the following
floating point numbers. Present your answers in both floating point and sign-
and-magnitude formats.

3DEC000016
C24C000016

5.26 Write a program in your favorite language that converts numbers represented in
the decimal floating point format

SEEMMMMM

into 10’s complementary integer form. Round any fractional decimal value.

5.27 What base is the student in the chapter cartoon using to perform his addition?

CHAPTER 5 REPRESENTING NUMERICAL DATA 177

