
CHAPTER 4

DATA FORMATS

Thomas Sperling, adapted by Benjamin Reece

4.0 INTRODUCTION
In Chapter 3 you had a chance to explore some of the properties of the binary number
system. You are already aware that within the computer the binary number system is
the system of choice, both for all forms of data storage and for all internal processing
of operations. As human beings, we normally don’t choose to do our work in binary
form. Our communications are made up of language, images, and sounds. For written
communications, and for our own data storage, we most frequently use alphanumeric
characters and symbols, representing English or some other language. Sometimes we
communicate with a photograph, or a chart or diagram, or some other image. Images
may be black and white or color; they may be still frames or moving. Sounds often
represent a different, spoken, form of written language, but they may also represent
other possibilities, such as music, the roar of an engine, or a purr of satisfaction. We
perform calculations using numbers made up of a set of numeric characters.

In the past, most business data processing took the form of text and numbers.
Today, multimedia, consisting of images and sounds in the form of video conferencing,
PowerPoint presentations, VoIP telephony, Web advertising, and more is of at least
equal importance. Since data within the computer is limited to binary numbers, it is
almost always necessary to convert our words, numbers, images, and sounds into a
different form in order to store and process them in the computer.

In this chapter, we consider what it takes to get different types of data into
computer-usable form and the different ways in which the data may be represented,
stored, and processed.

4.1 GENERAL CONSIDERATIONS
At some point, original data, whether character, image, sound, or some other form,
must be brought initially into the computer and converted into an appropriate
computer representation so that it can be processed, stored, and used within the
computer system. The fundamental process is shown in Figure 4.1.

Different input devices are used for this purpose. The particular choice of input
device reflects the original form of the data, and also the desired data representation
within the computer. Some devices perform the conversion from external form to
internal representation within the input device. At other times, the input device merely
serves to transform the data into a raw binary form that the computer can manipulate.
Further conversion is then performed by software within the computer.

There are varying degrees of difficulty associated with the input task. Normal
keyboard input, for example, is relatively straightforward. Since there are a discrete
number of keys on the keyboard, it is only necessary for the keyboard to generate
a binary number code for each key, which can then be identified as a simple
representation of the desired character. On the other hand, input from a device that

97

98 PART TWO DATA IN THE COMPUTER

FIGURE 4.1

Data Conversion and Representation

Human
form

Data
Input
device

Computer
Computer

representation

1101000101010101....
“abcdefgh345”

presents a continuous range of data (i.e.,
analog data) presents a more formidable
task, particularly if the data is continuously
changing with time, which is the case with a
video camera or microphone.

Adequate representation of the sound
input from a microphone, for example, will
require hardware designed to convert the
sound into binary numbers and may require
hundreds or even thousands of separate

pieces of data, each representing a sample of the sound at a single instant in time. If
the sound is to be processed within the computer into the form of words in a document the
task becomes even more challenging, since the translation of sounds into character form is
very complex and difficult, requiring sophisticated, specialized software.

The internal representation of data within the computer reflects the complexity of the
input source, and also the type of processing that is to take place. There is no need to
preserve all the individual points that make up a photographic image, for example, if the
goal is only to extract and process the characters that are present on the page; it is only
necessary to input and represent the entire set of data long enough to extract the actual
data that is to be used or kept. On the other hand, if the image is to be used as a figure
in an art book, it will be necessary to represent the image, with all its details, as accurately
as possible. For input forms that represent a continuum of values, such as photographic
images, video, and sound, the quantity of binary numbers and the number of bits in
each that are required to represent the input data accurately will grow quite rapidly with
increasing accuracy and resolution. In fact, some form of algorithmic data compression
will often be necessary to reduce the amount of data to a manageable level, particularly if
the data is to be downloaded or streamed over a low-speed transmission device, such as a
telephone modem or a network with limited bandwidth.

Of course, once the input data is in computer form it can be stored for future use,
or it can be moved between computers through networks or by using portable computer
media such as CD-ROM, flash drives, or, perhaps, even iPods. Images and sounds can be
downloaded from a website or attached to e-mail, for example. Provided that the receiving
computer has the appropriate software, it can store, display, and process a downloaded
image just as though the picture had been produced by an image scanner connected directly
to its own input.

For storage and transmission of data, a representation different from that used for
internal processing is often necessary. In addition to the actual data representing points in
an image or characters being displayed, the system must store and pass along information
that describes or interprets the meaning of the data. Such information is known as metadata.
In some cases, the description is simple: to read a pure text file may require only a single
piece of information that indicates the number of characters in the text or marks the end of
the text. A graphic image or sound requires a much more detailed description of the data.
To reproduce the image, a system must know the type of graphical image, the number of
colors represented by each data point, the method used to represent each color, the number
of horizontal and vertical data points, the order in which data points are stored, the relative
scaling of each axis, the location of the image on the screen, and much more. For a sound, the

CHAPTER 4 DATA FORMATS 99

system must know how long a time period each sample represents, the number of bits in each
sample, and even, perhaps, how the sound is to be used and coordinated with other sounds.

Individual programs can store and process data in any format that they want. The
format used to process and store text in WordPerfect is different from that used by
Microsoft Word, for example. The formats used by individual programs are known as
proprietary formats. Proprietary formats are often suitable for an individual user or a
group of users working on similar computer systems. As noted in Chapter 1, proprietary
standards sometimes become de facto standards due to general user acceptance.

Note that it is important to distinguish between the data representation used within an
individual piece of software and the data representation used for the input, output, storage,
and exchange of data, however. Modern computer systems and networks interconnect
many different types of computers, input and output devices, and computer programs.
A Web page viewed on a Macintosh computer might contain an image scanned on a
Hewlett-Packard image scanner, with HTML created on a Dell PC, and be served by an
IBM mainframe, for example.

Thus, it is critical throughout this discussion that standard data representations exist
to be used as interfaces between different programs, between a program and the I/O devices
used by the program, between interconnected hardware, and between systems that share
data, using network interconnections or transportable media such as CD-ROMs. These
data representations must be recognized by a wide variety of hardware and software so that
they can be used by users working within different computer environments.

A well-designed data representation will reflect and simplify the ways in which the data
is to be processed and will encompass the widest possible user community. For example,
the order of the letters in the alphabet is commonly used for the sorting and selection of
alphanumeric business data. It makes sense, then, to choose a computer representation of
alphabetic characters that will simplify these operations within the computer. Furthermore,
the representation of alphanumeric characters will encompass as many of the world’s
languages as possible to aid in international communication.

FIGURE 4.2

Some Common Data Representations

Alphanumeric
Image (bitmap)

Image (object)

Outline graphics and fonts
Sound
Page description

Video

Unicode, ASCII, EBCDIC
GIF (graphical image format), TIFF
(tagged image file format), PNG
(portable network graphics), JPEG,
PostScript, SWF (Macromedia Flash),
SVG
PostScript, TrueType
WAV, AVI, MP3, MIDI, WMA
pdf (Adobe Portable Document Format),
HTML, XML
Quicktime, MPEG-2 or -4, RealVideo,
WMV, DivX

Type of data Standard(s)

100 PART TWO DATA IN THE COMPUTER

There are many different standards in use for different types of data. A few of the
common ones are shown in Figure 4.2. We have not included the standard representations
for numerical data; those are discussed in the next chapter.

This section described the general principles that govern the input and representation
of data. Next, we consider some of the most important data forms individually.

4.2 ALPHANUMERIC CHARACTER DATA
Much of the data that will be used in a computer are originally provided in human-readable
form, specifically in the form of letters of the alphabet, numbers, and punctuation, whether
English or some other language. The text of a word processing document, the numbers
that we use as input to a calculation, the names and addresses in a database, the transaction
data that constitutes a credit card purchase, the keywords, variable names, and formulas
that make up a computer program, all are examples of data input that is made up of letters,
numbers, and punctuation.

Most of this data is initially input to the computer through a keyboard, although
alternative means, such as magnetic card stripes, document image scanning, voice-to-text
translation, and bar code scanning are also used. The keyboard may be connected directly
to a computer, or it may be part of a separate device, such as a video terminal, an online
cash register, or even a bank ATM. The data entered as characters, number digits, and
punctuation are known as alphanumeric data.

It is tempting to think of numeric characters as somehow different from other
characters, since numbers are often processed differently from text. Also, a number may
consist of more than a single digit, and you know from your programming courses that
you can store and process a number in numerical form within the computer. There is no
processing capability in the keyboard itself, however. Therefore, numbers must be entered
into the computer just like other characters, one digit at a time. At the time of entry, the
number 1234.5 consists of the alphanumeric characters ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’, ‘‘.’’, and ‘‘5’’.
Any conversion to numeric form will take place within the computer itself, using software
written for this purpose. For display, the number will be converted back to character form.

The conversion between character and number is also not ‘‘automatic’’ within the
computer. There are times when we would prefer to keep the data in character form,
for example, when the numbers represent a phone number or an address to be stored
and processed according to text criteria. Since this choice is dependent on usage within a
program, the decision is made by the programmer using rules specified within the program
language being used or by a database designer specifying the data type of a particular
entity. In simple languages like BASIC, for example, the programmer makes the choice
by placing a $ character at the end of a variable name that is to be used to keep data
in alphanumeric form. In C++ or Java, the type of variable must be declared before the
variable is used. When the data variable being read is numerical, the compiler will build
into the program a conversion routine that accepts numerical characters and converts them
into the appropriate numerical variable value. In general, numerical characters must be
converted into number form when calculations are to be performed.

Since alphanumeric data must be stored and processed within the computer in binary
form, each character must be translated to a corresponding binary code representation as
it enters the computer. The choice of code used is arbitrary. Since the computer does not

CHAPTER 4 DATA FORMATS 101

‘‘recognize’’ letters, but only binary numbers, it does not matter to the computer what code
is selected.

What does matter is consistency. Most data output, including numbers, also exits the
computer in alphanumeric form, either through printed output or as output on a video
screen. Therefore, the output device must perform the same conversion in reverse. It is
obviously important that the input device and the output device recognize the same code.
Although it would be theoretically possible to write a program to change the input code so
that a different output code would result in the desired alphanumeric output, this is rarely
done in practice. Since data is frequently shared between different computers in networks,
the use of a code that is standardized among many different types of computers is highly
desirable.

The data is also stored using the same alphanumeric code form. Consistent use of the
same code is required to allow later retrieval of the data, as well as for operations using data
entered into the computer at different times, such as during merge operations.

It also matters that the programs within the computer know something about the
particular data code that was used as input so that conversion of the characters that make
up numbers into the numbers themselves can be done correctly, and also so that such
operations as sorting can be done. It would not make a lot of sense to pick a code in which
the letters of the alphabet are scrambled, for example. By choosing a code in which the value
of the binary number representing a character corresponds to the placement of the character
within the alphabet, we can provide programs that sort data without even knowing what
the data is, just by numerically sorting the codes that correspond to each character.

Three alphanumeric codes are in common use. The three codes are known as
Unicode, ASCII (which stands for American Standard Code for Information Interchange,
pronounced ‘‘as-key’’ with a soft ‘‘s’’), and EBCDIC (Extended Binary Coded Decimal
Interchange Code, pronounced ‘‘ebb-see-dick’’). EBCDIC was developed by IBM. Its use is
restricted mostly to older IBM and IBM-compatible maniframe computers and terminals.
The Web makes EBCDIC particularly unsuitable for current work. Nearly everyone today
uses Unicode or ASCII. Still, it will be many years before EBCDIC totally disappears from
the landscape.

The translation table for ASCII code is shown in Figure 4.3. The EBCDIC code is
somewhat less standardized; the punctuation symbols have changed over the years. A
recent EBCDIC code table is shown in Figure 4.4. The codes for each symbol are given in
hexadecimal, with the most significant digit across the top and the least significant digit
down the side. Both ASCII and EBCDIC codes can be stored in a byte. For example, the
ASCII value for ‘‘G’’ is 4716. The EBCDIC value for ‘‘G’’ is C716. When comparing the two
tables, note that the standard ASCII code was originally defined as a 7-bit code, so there
are only 128 entries in the ASCII table. EBCDIC is defined as an 8-bit code. The additional
special characters in both tables are used as process and communication control characters.

The ASCII code was originally developed as a standard by the American National
Standards Institute (ANSI). ANSI also has defined 8-bit extensions to the original ASCII
codes that provide various symbols, line shapes, and accented foreign letters for the
additional 128 entries not shown in the figure. Together, the 8-bit code is known as Latin-1.
Latin-1 is an ISO (International Standards Organization) standard.

Both ASCII and EBCDIC have limitations that reflect their origins. The 256 code
values that are available in an 8-bit word limit the number of possible characters severely.

102 PART TWO DATA IN THE COMPUTER

FIGURE 4.3

ASCII Code Table

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

1

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

2

space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

3

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

6

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

7

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

MSD
LSD

Both codes provide only the Latin alphabet, Arabic numerals, and standard punctuation
characters that are used in English; Latin-1 ASCII also includes a small set of accents and
other special characters that extend the set to major western European cultures. Older
forms of EBCDIC omit certain characters, in particular, the ‘‘[’’ and ‘‘]’’ characters that are
used to represent subscripts in the C and Java programming languages, the ‘‘∧’’ character,
used as a mathematical operator in a number of languages, ‘‘{’’ and ‘‘}’’, used to enclose
code blocks in many languages, and the ‘‘∼’’ character, used for UNIX system commands
and Internet and Internet URLs. These shortcomings led to the development of a new,
mostly 16-bit, international standard, Unicode, which is quickly supplanting ASCII and
EBCDIC for alphanumeric representation in most modern systems. Unicode supports
approximately a million characters, using a combination of 8-bit, 16-bit and 32-bit words.
The ASCII Latin-1 code set is a subset of Unicode, occupying the values 0–255 in the
Unicode table, and therefore conversion from ASCII to Unicode is particularly simple: it is
only necessary to extend the 8-bit code to 16 bits by setting the eight most significant bits
to zero. Unicode to ASCII conversion is also simple, provided that the characters used are
limited to the ASCII subset.

The most common form of Unicode, called UTF-16 can represent 65,536 characters
directly, of which approximately forty-nine thousand are defined to represent the world’s
most used characters. An additional 6,400 16-bit codes are reserved permanently for
private use. A more recent standard, Unicode 5.0, allows for multiple code pages; presently
about one hundred thousand different characters have actually been defined. Unicode

FIGURE 4.4

An EBCDIC Code Table

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

SEL

HT

RNL

DEL

GE

SPS

RPT

VT

FF

CR

SO

SI

1

DLE

DC1

DC2

DC3

ENP

NL

BS

POC

CAN

EM

UB5

CU1

IFS

IGS

IRS

IUS

2

DS

SOS

FS

WU5

BYP/INP

LF

ETB

ESC

SA

SFE

SM/SW

CSP

MFA

ENQ

ACK

BEL

3

SYN

IR

PP

TRN

NBS

EOT

SBS

IT

RFF

CU3

DC4

NAK

SUB

4

space

RSP

¢

.

<

(

+

¦

5

&

!

$

*

)

;

¬

6

-

/

|

,

%

>

?

7

:

#

@

'

=

"

((

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8

a

b

c

d

e

f

g

h

i

9

j

k

l

m

n

o

p

q

r

A

~

s

t

u

v

w

x

y

z

B C

{

A

B

C

D

E

F

G

H

I

5HY

D

}

J

K

L

M

N

O

P

Q

R

E

\

NSP

S

T

U

V

W

X

Y

Z

F

0

1

2

3

4

5

6

7

8

9

EO

^

[

]

103

104 PART TWO DATA IN THE COMPUTER

FIGURE 4.5

Two-byte Unicode Assignment Table

0000

1000

2000

3000

4000

5000
●

●

●

A000

B000

C000

D000

E000

F000

FC00

Code range
(in hexadecimal)

p

p

p

p

p
r
r

r

\

\
\

0000–00FF Latin-I (ASCII)

General character alphabets: Latin, Cyrillic, Greek, Hebrew, Arabic, Thai, etc.

Symbols and dingbats: punctuation, math, technical, geometric shapes, etc.
3000–33FF Miscellaneous punctuations, symbols, and phonetics for Chinese, Japanese, and Korean
Unassigned

Unassigned

AC00–D7AF Korean Hangui syllables

Space for surrogates

E000–F8FF Private use

FC00–FFFF Various special characters

4E00–9FFF Chinese, Japanese, Korean ideographs

–

–

–

–

–

–

–

–

–

–

–

–

–

is multilingual in the most global sense. It defines codes for the characters of nearly
every character-based alphabet of the world in modern use, as well as codes for a large
set of ideographs for the Chinese, Japanese, and Korean languages, codes for a wide
range of punctuation and symbols, codes for many obsolete and ancient languages,
and various control characters. It supports composite characters and syllabic clusters.
Composite characters are those made up of two or more different components, only one
of which causes spacing to occur. For example, some vowels in Hebrew appear beneath
a corresponding consonant. Syllabic clusters in certain languages are single characters,
sometimes made up of composite components, that make up an entire syllable. The private
space is intended for user-defined and software-specific characters, control characters, and
symbols. Figure 4.5 shows the general code table layout for the common, 2-byte, form of
Unicode.

Reflecting the pervasiveness of international communications, Unicode is gradually
replacing ASCII as the alphanumeric code of choice for most systems and applications.
Even IBM uses ASCII or Unicode on its smaller computers, and provides two-way
Unicode-EBCDIC conversion tables for its mainframes. Unicode is the standard for use in
current Windows and Linux operating systems. However, the vast amount of archival data in
storage and use assures that ASCII and EBCDIC will continue to exist for some time to come.

CHAPTER 4 DATA FORMATS 105

Returning to the ASCII and EBCDIC tables, there are several interesting ideas to be
gathered by looking at the tables together. First, note, not surprisingly, that the codes for
particular alphanumeric characters are different in the two tables. This simply reemphasizes
that, if we use an ASCII terminal for the input, the output will also be in ASCII form
unless some translation took place within the computer. In other words, printing ASCII
characters on an EBCDIC terminal would produce garbage.

More important, note that both ASCII and EBCDIC are designed so that the order
of the letters is such that a simple numerical sort on the codes can be used within the
computer to perform alphabetization, provided that the software converts mixed upper-
and lowercase codes to one form or the other. The order of the codes in the representation
table is known as its collating sequence. The collating sequence is of great importance in
routine character processing, since much character processing centers on the sorting and
selection of data.

Uppercase and lowercase letters, and letters and numbers, have different collating
sequences in ASCII and EBCDIC. Therefore, a computer program designed to sort
ASCII-generated characters will produce a different, and perhaps not desired, result when
run with EBCDIC input. Particularly note that small letters precede capitals in EBCDIC,
but the reverse is true in ASCII. The same situation arises for strings that are a mix of
alphabetical characters and numbers. In ASCII the numbers collate first, in EBCDIC, last.

Both tables are divided into two classes of codes, specifically printing characters and
control characters. Printing characters actually produce output on the screen or on a printer.
Control characters are used to control the position of the output on the screen or paper, to
cause some action to occur, such as ringing a bell or deleting a character, or to communicate
status between the computer and an I/O device, such as the Control–‘‘C’’ key combination,
which is used on many computers to interrupt execution of a program. Except for position
control characters, the control characters in the ASCII table are struck by holding down the
Control key and striking a character. The code executed corresponds in table position to
the position of the same alphabetic character. Thus, the code for SOH is generated by the
Control-‘‘A’’ key combination and SUB by the Control-‘‘Z’’ key combination. Looking at
the ASCII and EBCDIC tables can you determine what control codes are generated by the
tab key? An explanation of each control character in the ASCII table is shown in Figure 4.6.
Many of the names and descriptions of codes in this table reflect the use of these codes for
data communications. There are also additional control codes in EBCDIC that are specific
to IBM mainframes, but we won’t define them here.

Unless the application program that is processing the text reformats or modifies the
data in some way, textual data is normally stored as a string of characters, including
alphanumeric characters, spaces, tabs, carriage returns, plus other control characters and
escape sequences that are relevant to the text. Some application programs, particularly
word processors, add their own special character sequences for formatting the text.

In Unicode, each UTF-16 alphanumeric character can be stored in two bytes, thus,
half the number of bytes in a pure text file (one with no images) is a good approximation
of the number of characters in the text. Similarly, the number of available bytes also
defines the capacity of a device to store textual and numerical data. Only a small percentage
of the storage space is needed to keep track of information about the various files; almost
all the space is thus available for the text itself. Thus, a 1 GB flash drive will hold about sixty
million characters (including spaces—note that spaces are also characters, of course!). If

106 PART TWO DATA IN THE COMPUTER

FIGURE 4.6

Control Code Definitions [STAL96]

NUL
SOH

STX

ETX
EOT
ENQ

ACK

BEL
BS
HT
LF
VT
FF

CR
SO

SI

DLE

DC1,DC2,
DC3, DC4
NAK

SYN

STB

CAN
EM

SUB

ESC

FS, GS,
RS, US

DEL

(Null) No character; used to fill space
(Start of Heading) Indicates start of a
header used during transmission
(Start of Text) Indicates start of text
during transmission
(End of Text) Similar to above
(End of Transmission)
(Enquiry) A request for response from a
remote station; the response is usually an
identification
(Acknowledge) A character sent by a
receiving device as an affirmative
response to a query by a sender
(Bell) Rings a bell
(Backspace)
(Horizontal Tab)
(Line Feed)
(Vertical Tab)
(Form Feed) Moves cursor to the starting
position of the next page, form, or screen
(Carriage return)
(Shift Out) Shift to an alternative
character set until SI is encountered
(Shift In) see above

(Data Link Escape) Similar to escape, but
used to change meaning of data control
characters; used to permit sending of data
characters with any bit combination
(Device Controls) Used for the control of
devices or special terminal features
(Negative Acknowledgment) Opposite of
ACK
(Synchronous) Used to synchronize a
synchronous transmission system
(End of Transmission Block) Indicates end
of a block of transmitted data
(Cancel) Cancel previous data
(End of Medium) Indicates the physical
end of a medium such as tape
(Substitute) Substitute a character for one
sent in error
(Escape) Provides extensions to the code
by changing the meaning of a specified
number of contiguous following characters
(File, group, record, and united separators)
Used in optional way by systems to provide
separations within a data set
(Delete) Delete current character

you assume that a page has about fifty rows of sixty characters, then the flash drive can hold
almost twenty thousand pages of text or numbers.

In reality, the flash drive will probably hold less because most modern word processors
can combine text with graphics, page layout, font selection, and other features. And it
probably has a YouTube video or two on there, as well. Graphics and video, in particular,
consume a lot of disk space. Nonetheless, this book, graphics and all, fits comfortably on a
single 1 GB flash drive.

Keyboard Input

Most alphanumeric data in the computer results from keyboard input, although alternative
forms of data input can be used. Operation of a keyboard is quite simple and straightforward:
when a key is struck on the keyboard, the circuitry in the keyboard generates a binary code,
called a scan code. When the key is released, a different scan code is generated. There are
two different scan codes for every key on the keyboard. The scan codes are converted to the
appropriate Unicode, ASCII, or EBCDIC codes by software within the terminal or personal
computer to which the keyboard is connected. The advantage of software conversion is

CHAPTER 4 DATA FORMATS 107

FIGURE 4.7

Keyboard Operation

ASCII data

DIR
1000100

1101001
1010010

0001101

Translation of
scan codes

that the use of the keyboard can be
easily changed to correspond to dif-
ferent languages or keyboard layouts.
The use of separate scan codes for key
press and release functions allows the
system to detect and process multiple
key combinations, such as those used
by the shift and control keys.

The keyboard operation is shown
in Figure 4.7. In the figure, the user

has typed the three letters ‘‘D,’’ ‘‘I,’’ ‘‘R,’’ followed by the carriage return character. The
computer translates the four scan codes to ASCII binary codes 1000100, 1001001, 1010010,
0001101, or their Unicode equivalents. Nonprinting characters, such as Control characters,
are treated identically to Printing characters. To the computer, keyboard input is treated
simply as a stream of text and other characters, one character after another, in the sequence
typed. Note that the carriage return character is part of the stream.

The software in most computer systems echoes printable keyboard input characters
directly back to the display screen, to allow the user to verify that the input has been typed
correctly. Since the display circuitry and software recognizes the same character code set as
the input, the characters are correctly echoed on the screen. In theory, a system could accept
Unicode input from a keyboard and produce EBCDIC output to a display screen, using
software to convert from one code set to the other. In practice, this is almost never done.

Alternative Sources of Alphanumeric Input

OPTICAL CHARACTER RECOGNITION Alphanumeric data may also be entered into
a computer using other forms of input. One popular alternative is to scan a page of text
with an image scanner and to convert the image into alphanumeric data form using optical
character recognition (OCR) software. Early OCR software required the use of special
typefaces for the scanned image and produced a lot of errors. The amount of proofreading
required often nullified any advantage to using the scanner. As OCR software continues
to improve, the use of scanners to read typed text directly from the page will undoubtedly
increase as a source of alphanumeric data input.

A variation on OCR is also used to read specially encoded characters, such as those
printed magnetically on checks. Another variation, handwriting recognition, is used to
identify characters entered as input to a graphics tablet pad or the touch screen of a tablet
PC, personal digital assistant, or cell phone. This technology continues to improve, but
is still limited to small quantities of data, carefully printed. Attempts to extend character
recognition to scanned documents and to characters written in cursory script have been
largely unsuccessful to date.

BAR CODE READERS Another alternative form of data input is the bar code reader.
Bar code input is practical and efficient for many business applications that require fast,
accurate, and repetitive input with minimum employee training. You are probably most
familiar with its use at grocery checkout counters, but many organizations use bar codes,
particularly for inventory control and order filling.

108 PART TWO DATA IN THE COMPUTER

FIGURE 4.8

UPC Bar Code

Bar codes represent alphanumeric data. The UPC bar code
in Figure 4.8, for example, translates to the alphanumeric value
780471 108801 90000. Bar codes are read optically using a device
called a wand that converts a visual scan of the code into electrical
binary signals that a bar code translation module can read. The
module translates the binary input into a sequence of number
codes, one code per digit, that can then be input into the computer.
The process is essentially similar to those already discussed. The
code is usually then translated to Unicode or ASCII.

MAGNETIC STRIPE READERS Magnetic stripe readers are used to read alphanumeric
data from credit cards and other similar devices. The technology used is very similar to that
used for magnetic tape.

RFID INPUT RFID (Radio Frequency IDentification) is an inexpensive technology that
can be used to store and transmit data to computers. RFID technology can be embedded
in RFID tags or ‘‘smart cards’’ or even implanted in humans or animals. One familiar type
of RFID tag is shown in Figure 4.9. An RFID tag can store anywhere from a few kilobytes
to many megabytes of data. Using radio waves, RFID tags can communicate with a nearby
transmitter/receiver that captures and passes the data as input to a computer for processing.
Most RFID data is alphanumeric, although it is also possible with some RFID systems to
provide graphical images, photographs, and even video. RFID technology is used for a
wide variety of applications, including store inventory, theft prevention, library book and
grocery checkout, car key verification, passport identification, cargo tracking, automobile
toll and public transportation fare collection, golf ball tracking (!), animal identification,
implanted human medical record storage, and much more.

VOICE INPUT It is currently possible and practical to digitize audio for use as input
data. As we discuss in Section 4.4, most digitized audio data is simply stored for later
output or is processed in ways that modify the sound of the data. The technology necessary

FIGURE 4.9

An RFID tag used at WalMart

Chip

Antenna

to interpret audio data as voice input and to translate the
data into alphanumeric form is still relatively primitive. The
translation process requires the conversion of voice data into
sound patterns known as phonemes. Each phoneme in a
particular language represents one or more possible groupings
of letters in that language. The groupings must then be matched
and manipulated and combined to form words and sentences.
Pronunciation rules, grammar rules, and a dictionary aid in
the process. The understanding of sentence context is also
necessary to correctly identify words such as to, too, or two.
As you can see, the task is a daunting one! Progress is being
made, however, and it is expected that voice input will be a
major source of alphanumeric input in the foreseeable future.

CHAPTER 4 DATA FORMATS 109

4.3 IMAGE DATA
Although alphanumeric data was long the traditional medium of business, improved
computer technology and the growth of the Web have elevated the importance of images in
the business computing environment. Photographs can be stored within the computer to
provide rapid identification of employees. Drawings can be generated rapidly and accurately
using tools that range from simple drawing packages to sophisticated CAD/CAM systems.
Charts and graphs provide easily understood representations of business data and trends.
Presentations and reports contain images and video for impact. Multimedia of all kinds is
central to the success of the Web.

Images come in many different shapes, sizes, textures, colors, and shadings. Different
processing requirements require different forms for image data. All these differences
make it difficult to define a single universal format that can be used for images in the
way that the standard alphanumeric codes are used for text. Instead, the image will be
formatted according to processing, display, application, storage, communication, and user
requirements.

Images used within the computer fall into two distinct categories. Different computer
representations, processing techniques, and tools are used for each category:

■ Images such as photographs and paintings that are characterized by continuous
variations in shading, color, shape, and texture. Images within this category may
be entered into the computer using an image scanner, digital camera, or video
camera frame grabber. They may also be produced within the computer using
a paint program. To maintain and reproduce the detail of these images, it is
necessary to represent and store each individual point within the image. We will
refer to such images as bitmap images. Sometimes, they are called raster images
because of the way the image is displayed. (See Figure 10.16, page 324). The GIF
and JPEG formats commonly used on the Web are both examples of bitmap
image formats.

■ Images that are made up of graphical shapes such as lines and curves that can
be defined geometrically. The shapes themselves may be quite complex. Many
computer experts refer to these shapes as graphical objects. For these images, it
is sufficient to store geometrical information about each object and the relative
position of each object in the image. We will refer to these images as object
images. They are also known, somewhat incorrectly, as vector images, because
the image is often (but not always) made up of straight-line segments called
vectors. Object images are normally produced within the computer using some
sort of drawing or design package. They may also result from other types of
processing, for example, as data plots or graphs representing the data in a
spreadsheet. More rarely, they may occur as the result of the translation by
special software of scanned bitmap images that are simple enough to reduce to
object form.

Most object image formats are proprietary. However, W3C, the
international consortium that oversees the Web, has defined a standard, SVG

110 PART TWO DATA IN THE COMPUTER

(scalable vector graphics), based on XML Web description language tags.
Macromedia Flash is also in popular use.

With only rare exceptions1, the nature of display technology make it much more
convenient and cost effective to display and print all images as bitmaps. Object images
are converted to bitmap for display. Looking at an image, it can sometimes be difficult to
determine whether the original form is bitmap or object. It is possible, for example, to
describe subtle gradations of color within an image geometrically. The processing required
to create movement in computer-animated images may dictate the use of object images,
even if the objects themselves are very complex. The type of image representation is
often chosen on the basis of the computer processing to be performed on the image. The
movies Shrek and Toy Story are amazing examples of the possibilities of object images.
(See Figure 4.14, for example.)

Sometimes, both types of image data occur within the same image. It is always possible
to store graphical objects in a bitmap format, but it is often desirable in such cases to
maintain each type of image separately. Most object image representations provide for the
inclusion of bitmap images within the representation.

Bitmap Images

Most images—photographs, graphical images and the like—are described most easily
using a bitmap image format. The basic principle for representing an image as a digital
bitmap is simple. A rectangular image is divided into rows and columns, as shown in
Figure 4.10. The junction of each row and column is a point (actually a small area) in the
image known as a pixel, for pi[x]cture element. Corresponding to each pixel is a set of
one or more binary numerical values that define the visual characteristics of that point.

FIGURE 4.10

A 16 × 8 Bitmap Image Format

pixels stored in order p(0,0), p(0,1),... p(0,15), p(1,0),... p(1,15),... p(7,15)

pixel(0,0)

row

pixel(7,15)

pixel(0,1)

pixel(1,0)
pixels. . . .

1The exceptions are the circular scan screens used for radar display and ink plotters used for architectural
and engineering drawings.

CHAPTER 4 DATA FORMATS 111

FIGURE 4.11

Image Pixel Data

Most commonly, color and color intensity are the primary characteristics of interest, but
secondary characteristics such as transparency may also be present. The meaning and scales
for these values are defined within the image metadata that is included with the image,
along with the number of rows and columns, identification of the bitmap format in use,
and other relevant information about the image.

A pixel aspect ratio may also be included so that display of the image may be adjusted
if the pixel is rectangular rather than square. The specific metadata included with an image
is part of the definition for a particular bitmap format.

Pixel data is normally stored from top to bottom, one row at a time, starting from
pixel(0, 0), the top, leftmost pixel, to pixel(nrow−1, ncol−1), representing the pixel at the
bottom right corner of the image. (For quirky reasons, this image would be known as a ncol

× nrow image, instead of the other way around.) Because the representation is so similar
to the way in which television images are created, this layout is called a raster, and the
presentation of pixels as input or output, one pixel at a time, in order, is called a raster scan.
The actual pixel coordinates, pixel(row,column), do not need to be stored with their values,
because the pixels are stored in order, and the number of rows and columns is known.

The actual data value representing a pixel could be as simple as one bit, for an image
that is black and white (0 for black, 1 for white, for example) or quite complex. Each pixel
in a high-quality color image, for example, might consist of many bytes of data: a byte for
red, a byte for green, and a byte for blue, with additional bytes for other characteristics such
as transparency and color correction.

As a simple example, look at the image shown in Figure 4.11. Each point in the
photograph on the left is represented by a 4-bit code corresponding to one of sixteen gray
levels. For this image, hexadecimal F represents black, and hexadecimal 0 represents white.
The representation of the image shown on the right indicates the corresponding values for
each pixel.

The storage and processing of bitmap images frequently requires a large amount of
memory, and the processing of large arrays of data. A single color picture containing 768

112 PART TWO DATA IN THE COMPUTER

rows of 1024 pixels each, (i.e., a 1024 × 768 image) with a separate byte to store each of
three colors for each pixel, would require nearly 2.4 megabytes of storage. An alternative
representation method that is useful for display purposes when the number of different
colors is small reduces memory requirements by storing a code for each pixel, rather than
the actual color values. The code for each pixel is translated into actual color values using a
color translation table known as a palette that is stored as part of the image metadata. This
method is discussed in Chapter 10. Data compression may also be used to reduce storage
and data transmission requirements.

The image represented within the computer is really only an approximation to the
original image, since the original image presents a continual range of intensity, and perhaps
also of color. The faithfulness of the computer representation depends on the size of the
pixels and the number of levels representing each pixel. Reducing the size of each pixel
improves the resolution, or detail level, of the representation by increasing the number of
pixels per inch used to represent a given area of the image. It also reduces the ‘‘stepping’’
effects seen on diagonal lines. Increasing the range of values available to describe each pixel
increases the number of different gray levels or colors available, which improves the overall
accuracy of the colors or gray tones in the image. The trade-off, of course, is in storage
requirements and processing and transmission time.

Bitmap representations are particularly useful when there is a great amount of detail
within an image, and for which the processing requirements are fairly simple. Typical
processing on bitmap images includes storage and display, cutting and pasting of pieces of
the image, and simple transformations of the image such as brightness and contrast changes,
changing a dimension, or color alterations. Most bitmap image processing involves little
or no direct processing of the objects illustrated within the image.

EXAMPLE
As an example of a bitmap image storage format, consider the popular Graphics Interchange
Format (GIF), method of storing images. GIF was first developed by CompuServe in 1987 as a
proprietary format that would allow users of the online service to store and exchange bitmap
images on a variety of different computing platforms. A second, more flexible, form of GIF
was released in 1989. The later version, GIF89a, also allows a series of GIF images to be
displayed sequentially at fixed time intervals to created ‘‘animated GIF images.’’ The GIF
format is used extensively on the Web.

GIF assumes the existence of a rectangular ‘‘screen’’ upon which is located one or more
rectangular images of possibly different sizes. Areas not covered with images are painted
with a background color. Figure 4.12 illustrates the layout of the screen and its images.
The format divides the picture information and data into a number of blocks, each of which
describes different aspects of the image. The first block, called the header block, identifies
the file as a GIF file and specifies the version of GIF that is being used.

Following the header block is a logical screen-descriptor block, which identifies the
width and height of the screen, describes an optional color table for the images on the screen
(the palette), indicates the number of bits per color available, identifies the background
screen color, and specifies the pixel aspect ratio.

Each image within the screen is then stored in its own block, headed by an
image-descriptor block. The image-descriptor block identifies the size and position of
the image on the screen, and also allows for a palette specific to the particular image, if
desired. The block also contains information that makes it possible to display individual

CHAPTER 4 DATA FORMATS 113

FIGURE 4.12

GIF Screen Layout

Screen
height

Image left
position

Image top
position

Image 1

Image 2
Image
height

Image
width

Screen width

Background
Screen

Image 3

FIGURE 4.13

GIF File Format Layout

6 bytes 6 bytes (optional)
Up to 768

bytes

Header
block

“GIFxxa”

Global
color
table

Logical screen
descriptor

block

Image
descriptor

block

9 bytes (optional)
Up to 768

bytes

Determined
from

descriptor

(Depends
on size

of image)

Local
color
table

Image
data

Image 1 Image 2

images at different resolutions. The actual pixel data for the image follows. The pixel data
is compressed, using an algorithm called LZW. The basic GIF file format layout is shown in
Figure 4.13.

Even though we have simplified the description, you can see that a graphical data
format can be quite complex. The complexity is required to provide all the information
that will allow the use of the image on a variety of different equipment.

There are a number of alternatives to the GIF format. In particular, the GIF format is
limited to 256 colors, which is sometimes insufficient to display the details of a painting or

114 PART TWO DATA IN THE COMPUTER

photograph, for example. A popular alternative, JPEG format (Joint Photographers Expert
Group), addresses this concern by allowing more than sixteen million colors to be repre-
sented and displayed. JPEG employs a lossy compression algorithm to reduce the amount of
data stored and transmitted, but the algorithm used reduces image resolution under certain
circumstances, particularly for sharp edges and lines. This makes JPEG more suitable for
the representation of highly detailed photographs and paintings, but GIF is preferable
for line drawings and simple images. Other formats include TIFF, which is popular on
Macintosh platforms, BMP, a Windows format, and PCX, a format originally designed for
use with PC Paintbrush software. PNG is a recent format that eliminates many GIF and
JPEG shortcomings. It is intended to replace GIF and JPEG for many Internet applications.

Object Images

When an image is made up of geometrically definable shapes, it can be manipulated
efficiently, with great flexibility, and stored in a compact form. Although it might seem that
such images are rare, this turns out not to be the case.

Object images are made up of simple elements like straight lines, curved lines (known
as Bezier curves), circles and arcs of circles, ovals, and the like. Each of these elements can
be defined mathematically by a small number of parameters. For example, a circle requires
only three parameters, specifically, the X and Y coordinates locating the circle in the image,
plus the radius of the circle. A straight line needs the X and Y coordinates of its end points,
or alternatively, by its starting point, length, and direction. And so on.

Because objects are defined mathematically, they can be easily moved around, scaled,
and rotated without losing their shape and identity. For example, an oval can be built

FIGURE 4.14

An Object Image

Dreamworks LLC/Photofest.

from a circle simply by scaling the
horizontal and vertical dimensions dif-
ferently. Closed objects can be shaded
and filled with patterns of color, also
described mathematically. Object ele-
ments can be combined or connected
together to form more complex ele-
ments, and then those elements can
also be manipulated and combined. You
might be surprised to learn that Shrek,
the image in Figure 4.14, is an example
of an object image.

Object images have many advan-
tages over bitmap images. They require
far less storage space. They can be
manipulated easily, without losing their
identity. Note, in contrast, that if a
bitmap image is reduced in size and
reenlarged, the detail of the image is
permanently lost. When such a process
is applied to a bitmapped straight line,

CHAPTER 4 DATA FORMATS 115

the result is ‘‘jaggies.’’ Conversely, images such as photographs and paintings cannot be
represented as object images at all and must be represented as bitmaps.

Because regular printers and display screens produce their images line by line, from the
top to the bottom of the screen or paper, object images also cannot be displayed or printed
directly, except on plotters. Instead, they must be converted to bitmap images for display
and printing. This conversion can be performed within the computer, or may be passed on
to an output device that has the capability to perform the conversion. A PostScript printer
is an example of such a device. To display a line on a screen, for example, the program
would calculate each of the pixels on the screen that the line passes through, and mark them
for display. This is a simple calculation for a computer to perform. If the line is moved or
resized, it is only necessary to perform the calculation again to display the new image.

EXAMPLE
The PostScript page description language is an example of a format that can be used to
store, transmit, display, and print object images. A page description is a list of procedures
and statements that describe each of the objects on a page. PostScript embeds page
descriptions within a programming language. Thus, an image consists of a program written
in the PostScript language.

The programming language is stored in ASCII or Unicode text form. Thus, PostScript
files can be stored and transmitted as any other text file. An interpreter program in the
computer or output device reads the PostScript language statements and uses them to
create pages that can then be printed or displayed. The interpreter produces an image that is
the same, regardless of the device it is displayed or printed on. Compensation for differences
in device resolution and pixel shape is built into the interpreter.

PostScript provides a large library of functions that facilitate every aspect of an
object-based image. There are functions that draw straight lines, Bezier curves, and arcs of
a circle, functions that join simple objects into more complex ones, translate an object to
a different location on the page, scale or distort an object, rotate an object, and create the
mirror image of an object, and functions that fill an object with a pattern, or adjust the width
and color of a line. There are methods for building and calling procedures, and IF-THEN-ELSE

and loop programming structures. The list goes on and on.
A simple program that draws a pair of shaded and concentric circles within a rectangle

in the middle of an 8 1/2 × 11-inch page is shown in Figure 4.15. This example shows a
number of features of the language. The page is laid out as an X, Y grid, with the origin at
the lower left corner. Each unit in the grid is 1/72 of an inch, which corresponds to 1 point
in publishing. Each line contains a function, with a number of parameters that provide the
specific details for the function. The parameters precede the function call. Text following
the % symbols are comments.

The first line contains a translate function that moves the X, Y origin to the center of
the page. The parameters for this function, 288 and 396, represent the X and Y distances
moved in points. (Note that 288/72 = 4 inches in X and 396/72 = 5 inches in Y .) Each
circle is created with an arc function. The parameters for the arc function are X origin and
Y origin for the arc, radius, and starting and finishing angle in degrees. (0 to 360 produces
a full circle.) You should be able to follow the remainder of the program on your own. Note
that the statements are interpreted in sequence: the second, gray circle is layered on top of
the first.

116 PART TWO DATA IN THE COMPUTER

FIGURE 4.15

A PostScript Program

288 396 translate
0 0 144 0 360 arc
fill

0.5 setgray
0 0 72 0 360 arc
fill

0 setgray
-216 -180 moveto
0 360 rmoveto
432 0 rmoveto
0 -360 rmoveto
closepath
stroke

showpage

% move origin to center of page
% define 2" radius black circle

% define 1" radius gray circle

% reset color to black
% start at lower left corner
% and define rectangle
% ...one line at a time

% completes rectangle
% draw outline instead of fill

% produce the image

FIGURE 4.16

Another PostScript Program

stocks

cash

Personal Assets

baseball
cards

% procedure to draw pie slice
%arguments graylevel, start angle, finish angle
/wedge {
 0 0 moveto
 setgray
 /angle1 exch def
 /angle2 exch def
 0 0 144 angle1 angle2 arc
 0 0 lineto
 closepath } def

%set up text font for printing
/Helvetica-Bold findfont
 16 scalefont
 setfont

.4 72 108 wedge fill % 108-72 = 36 = .1 circle

.8 108 360 wedge fill % 70%
% print wedge in three parts
32 12 translate
0 0 72 wedge fill
gsave
-8 8 translate
1 0 72 wedge fill
0 setgray stroke
grestore

% add text to drawing
0 setgray
144 144 moveto
(baseball cards) show
-30 200 (cash) show
-216 108 (stocks) show
32 scalefont
(Personal Assets) show

showpage

CHAPTER 4 DATA FORMATS 117

Arguably, the most important feature in PostScript is the inclusion of scalable font
support for the display of text. Font outline objects are specified in the same way as other
objects. Each font contains an object for each printable character in the extended ASCII
character set. PostScript includes objects for thirty-five standard fonts representing eight
font families, plus two symbol fonts, and others can be added. Unicode fonts are also
available. Fonts can be manipulated like other objects. Text and graphics can be intermixed
in an image. The graphic display of text is considered further in the next subsection.

Figure 4.16 shows another, more complicated, example of a PostScript program. This
one presents a pie chart with an expanded slice, and labels. The expanded slice includes a
shadow to improve its appearance. Each slice of the pie is drawn using a procedure called
wedge. The shadow is drawn by drawing the wedge three times, once in black, then moved
a bit and drawn in white and as an outline.

PostScript is a format for storing images in object form. Nonetheless, there are occasions
when it is necessary to embed a bitmap image into what is primarily an object-based image.
PostScript provides this capability. It even provides the ability to crop, enlarge, shrink,
translate, and rotate the embedded bitmap images, within the limits of the bitmap format,
of course.

Representing Characters as Images

The representation of character-based data in a typical modern, graphically based systems
presents an additional challenge. In graphically based systems it is necessary to distinguish
between characters and the object image-based representations of characters, known as
glyphs. Individual glyphs are based on a particular character in a particular font. In some
cases, a glyph may also depend on neighboring characters. Should the data be represented
and stored as characters or as glyphs? The answer depends on what the text is to be used
for. Most text is processed and stored primarily for its content. A typical word processor,
for example, stores text as character data, in Unicode format; fonts are embedded into the
text file using special sequences of characters stored with the data, often in a proprietary file
format supported by the particular application software. Conversion of the character data
to glyphs for presentation is known as rendering and is performed by a rendering engine
program. The glyphs are then converted to bitmap graphics for presentation according to
the characteristics of the display device or printer. For the rare occasion where the text
is actually embedded within an image, the glyphs that represent the characters may be
combined, stored, and manipulated as an object image.

Video Images

Although GIF images are adequate for simple animation loops, there are a number of
additional considerations for the storage, transmission, and display of true video. The most
important consideration is the massive amount of data created by a video application. A
video camera producing full screen 1024 × 768 pixel true-color images at a frame rate of
thirty frames per second, for example, will generate 1024 pixels × 768 pixels × 3 bytes of
color/image × 30 frames per second = 70.8 megabytes of data per second! A one-minute
film clip would consume 4.25 gigabytes of storage.

118 PART TWO DATA IN THE COMPUTER

There are a number of possible solutions: reduce the size of the image, limit the number
of colors, or reduce the frame rate. It is also possible, or, more likely, necessary to compress
the video data. Each of these options has obvious drawbacks. The solution chosen also
depends on the nature of the method used to make the video available to the user. One
option is to present the video as a file on the system. The video file is either accessed from a
removable medium, such as a DVD-ROM, or downloaded and stored on the system.

Alternatively, the video may be made available to the system in real time. The latter
technique is called streaming video. Streaming video is normally downloaded continuously
from a Web server or network server. Video conferencing is an example of a streaming
video application. The requirements for streaming video are much more stringent than for
locally stored video, because the amount of data that can be downloaded per unit time is
limited by the capability of the network connection. Furthermore, the processor must be
able to uncompress and decode the data fast enough to keep up with the incoming data
stream. Generally speaking, streaming video is of lower display quality than video that is
available locally.

Various mixes of these solutions are used. There are a number of proprietary formats
in use, including RealPlayer from Real.com, Windows Media Format from Microsoft, and
Flash Video from Macromedia. The output, although less than ideal, is adequate for many
applications.

When the video data is local to the system, it is possible to generate and display
high-quality video using sophisticated data compression techniques, but the processing
required for generation of the compressed data is beyond the capabilities of most computer
systems and users at the present time. The MPEG-2 and MPEG-4 formats store real-time
video that produces movie quality images, with the video data compressed to 30–60
megabytes or less of data per minute, even for high definition images. Even the re-creation
of the original images for display requires substantial computing power. Although high-end
modern personal computer systems have adequate processing power to decode high-quality
video data, many computer systems provide additional hardware support for the reading,
decoding, and displaying of real-time video data from DVDs. Direct transmission of
high-quality digital video data is still confined to very high-speed networks and satellite
systems.

Image and Video Input

Of course the obvious input source for images and video these days is the Web. Still, those
images and videos had to originate somewhere, so we’ll take a brief look at the various
means used to input them and convert them to the digital formats that we use. Three classes
of devices provide most of the imaging capability that we use.

IMAGE SCANNING One common way to input image data is with an image scanner.
Data from an image scanner takes the form of a bitmap that represents some sort
of image—a graphic drawing, a photograph, magnetically inked numbers on a check,
perhaps even a document of printed text. The scanner electronically moves over the image,
converting the image row by row into a stream of binary numbers, each representing a pixel.
Software in the computer then converts this raw data into one of the standard bitmap data
formats in use, adding appropriate metadata, applying data compression when desired,

CHAPTER 4 DATA FORMATS 119

reconfiguring the data as necessary, and storing the data as a file that is then available
for use.

DIGITAL CAMERAS AND VIDEO CAPTURE DEVICES Digital cameras and video
cameras can be used to capture bitmap images and video. An electronic raster scan
mechanism is used to collect light and digitize the data from the lens. Most modern
cameras collect the data in a simple, vendor-specific so-called raw format. Because the
amount of data generated for a single image in a modern camera is large (a common value
is 8.1 megapixels × 3 or more bytes per pixel for example), the camera usually contains
software to convert the raw data to a compressed JPEG or MPEG image for storage and
transfer to a computer. Some cameras allow the direct transfer of raw images to a computer
for more precise processing control.

GRAPHICAL INPUT USING POINTING DEVICES Mice, pens, and other pointing
devices can be used in conjunction with drawing or painting programs to input graphical
data. The input from most of these devices is a pair of binary numbers representing either X
and Y coordinates on the screen or relative movements in X and Y directions. Some drawing
tablets also provide a measure of the pressure applied to the drawing pen. The pointing
device is an input device. The appearance of a cursor on the output screen results from a
calculation within the program that detects the current set of coordinates. The program
then outputs a cursor as part of the screen image bitmap at the appropriate location on the
screen. Internally, the image drawn will depend on the application program being used.
Paint packages provide tools that use the pointing device to create ‘‘paintings’’ in a bitmap
image form. Drawing packages provide tools that create and manipulate objects. In this
case, the result is an object image.

4.4 AUDIO DATA
Sound has become an important component in modern computer applications. Sound is
used as an instructional tool, as an element of multimedia presentations, to signal events
within the computer, and to enhance the enjoyment of games. Sound can be stored in
digital form on CD-ROMs and other media and made available to accompany a film
clip, illustrate the nuances of a symphony, or reproduce the roar of a lion. Sound can
be manipulated in the computer to compose music and to create the sounds of different
musical instruments, even an entire orchestra.

Sound is normally digitized from an audio source, such as a microphone or amplifier,
although it is possible to purchase instrumentation that connects the computer directly to
a musical keyboard and synthesizer. For most users, the sound was previously digitized and
provided on a CD-ROM or downloaded from a Web site.

Since the original sound wave is analog in nature, it is necessary to convert it to
digital form for use in the computer. The technique used is the same as that used for
music CDs and many other types of analog waveforms. The analog waveform is sampled
electronically at regular time intervals. Each time a sample is taken, the amplitude of the
sample is measured by an electronic circuit that converts the analog value to a binary
equivalent. The circuit that performs this function is known as an A-to-D converter. The
largest possible sample, which represents the positive peak of the loudest possible sound, is
set to the maximum positive binary number being used, and the most negative peak is set

120 PART TWO DATA IN THE COMPUTER

to the largest negative number. Binary 0 falls in the middle. The amplitude scale is divided
uniformly between the two limits. The sampling rate is chosen to be high enough to capture
every nuance in the signal being converted. For audio signals, the sampling rate is normally
around 50 kilohertz, or fifty thousand times a second. The basic technique is illustrated in
Figure 4.17. A typical audio signal is shown in the upper diagram. A portion of the signal
is shown in expanded form below. In this diagram, the signal is allowed to fall between
−64 and 64. Although we haven’t discussed the representation of negative numbers yet,
the consecutive values for the signal in this diagram will be the binary equivalents to −22,
−7, +26, 52, 49, and 2. The A-to-D conversion method is discussed more thoroughly in
Chapter 14.

Within the computer, most programs would probably treat this data as a one-
dimensional array of integers. Like graphics images, however, it is necessary to maintain,
store, and transmit metadata about the waveform, in addition to the waveform itself.
To process and reproduce the waveform, a program would have to know the maximum
possible amplitude, the sampling rate, and the total number of samples, at the very least. If
several waveforms are stored together, the system would have to identify each individual
waveform somehow and establish the relationships between the different waveforms. Are
the waveforms played together, for example, or one right after another?

As you might expect, there are a number of different file formats for storing audio
waveforms, each with its own features, advantages, and disadvantages. The .MOD format,
for example, is used primarily to store samples of sound that will be manipulated and
combined to produce a new sound. A .MOD file might store a sample of a piano tone.

FIGURE 4.17

Digitizing an Audio Waveform

Samples

Amplitude

Section
expanded

Typical
audio

waveform

64
48
32
16

0
–16

t

CHAPTER 4 DATA FORMATS 121

Software could then manipulate the sample to reproduce all the different keys on the
keyboard, it could alter the loudness of each tone, and it could combine them to synthesize
the piano lines in a piece of music. Other instruments could be synthesized similarly.
The MIDI format is used to coordinate the sounds and signals between a computer and
connected musical instruments, particularly keyboards. MIDI software can ‘‘read’’ the
keyboard and can also reproduce the sounds. The .VOC format is a general sound format
that includes special features such as markers within the file that can be used to repeat
(loop) a block or synchronize the different components of a multimedia presentation.
Block looping can extend a sound by repeating it over and over again. The .WAV format is
a general-purpose format used primarily to store and reproduce snippets of sound. MP3 is
a derivative of the MPEG-2 specification for the transmission and storage of music. It has
gained popularity because of the large numbers of MP3-coded recordings posted on the
Web and because of the availability of low-cost portable devices that can download, store,
decode, and reproduce MP3 data.

Like video, audio data can also be generated and stored locally or streamed from a
network or website. The data transmission and processing requirements for audio are much
less stringent than those for video, however. Audio is routinely streamed from the Web.
There are numerous websites broadcasting audio from radio stations and other sources,
and streaming audio is also used for Internet telephony.

EXAMPLE
The .WAV format was designed by Microsoft as part of its multimedia specification. The
format supports 8- or 16-bit sound samples, sampled at 11.025 KHz, 22.05 KHz, or
44.1 KHz in mono or stereo. The .WAV format is very simple and does not provide support
for a lot of features, such as the looping of sound blocks .WAV data is not compressed.

The format consists of a general header that identifies a ‘‘chunk’’ of data and specifies
the length of a data block within the chunk. The header is followed by the data block. The
general header is used for a number of different multimedia data types.

The layout of a .WAV file is shown in Figure 4.18. The data block is itself broken into
three parts. First, a 4-byte header identifies a sound file with the ASCII word ‘‘WAVE.’’ A
format chunk follows. This chunk contains such information as the method used to digitize
the sound, the sampling rate in samples per second, the data transfer rate in average number
of bytes per second, the number of bits per sample, and whether the sound is recorded in
mono or stereo. The actual data follows.

FIGURE 4.18

.WAV Sound Format

Chunk id

4 bytes 4 bytes

4 bytes (as needed)

Data (<length of chunk> bytes)

WAVE Actual sound dataFormat
chunk

Length of
chunk

122 PART TWO DATA IN THE COMPUTER

If you have a personal computer that runs Windows and supports sound, you will
probably find .WAV files in one of your Windows directories. Look for the file tada.wav, which
holds the brief trumpet fanfare that sounds when Windows is started.

EXAMPLE
MP3 is the predominant digital audio data format for the storage and transmission of music.
It is characterized by reasonable audio quality and small file size. MP3 uses a number of
different tactics and options to achieve its small file sizes. These include options for different
audio sampling rates, fixed or variable bit rates, and a wide range of bit rates that represent
different levels of compression. The bit rate, measured in Kbits/second is, of course, directly
related to the size of the file, however lower bit rates result in lower audio quality. The
options chosen are made by the creator of the file during the encoding process, based on the
trade-off between tolerable audio quality versus transmission rate or file size. An MP3 player
must be capable of correctly decoding and playing any of the format variations specified in
the MP3 standard.

The primary contributor to the small MP3 file size is the use of psychoacoustic lossy
compression. The size of an MP3 file is typically about 1/10th the size of an equivalent
uncompressed .WAV file. Psychoacoustic compression is based on the assumption that there
are sounds that a listener cannot hear or will not notice, which can then be eliminated. As an
example, a soft sound in the background is not usually noticeable against a loud foreground
sound. The level of compression depends on the tolerable level of sound quality, but also on
the nature of the audio being compressed. A typical MP3 file samples the audio data 44,100
times per second, which is the same as the data rate used on audio CDs, and presents the
data to the listener at a rate of either 128 or 192 Kb/second.

Figure 4.19 shows the structure of an MP3 file. The file consists of an optional ID field
that contains such information as song title and artist, followed by multiple data frames.
Each frame has a 32-byte header that describes the frame data, followed by an optional

FIGURE 4.19

MP3 Audio Data Format

...
ID

Field
(optional)

MP3
header

MP3
data

MP3 frameMP3 frameMP3 frame

32 bytes 2 bytes 384, 576,
or 1152
samples

MP3 file

error
check

(optional)

CHAPTER 4 DATA FORMATS 123

2-byte error-checking code, followed by the data itself. The header contains 2 bytes of
synchronization and MP3 version data followed by the bit rate, the audio sample rate, the
type of data (for example, stereo or monaural audio), copy protection, and other information.
The MP3 standard requires that each frame contains 384, 576, or 1152 audio samples
of data. Note that this format allows the bit rate to vary for each frame, allowing for more
efficient compression, but more difficult encoding procedures.

4.5 DATA COMPRESSION
The volume of multimedia data, particularly video, but also sound and even high resolution
still images, often makes it impossible or impractical to store, transmit, and manipulate the
data in its normal form. Instead it is desirable or, in some cases, necessary to compress the
data. This is particularly true for video clips, real-time streaming video with sound, lengthy
sound clips, and images that are to be transmitted across the Internet through modem
connections. (It is also true of large data and program files of any type.)

There are many different data compression algorithms, but all fall into one of two
categories, lossless or lossy. A lossless algorithm compresses the data in such a way that
the application of a matching inverse algorithm restores the compressed data exactly to its
original form. Lossy data compression algorithms operate on the assumption that the user
can accept a certain amount of data degradation as a trade-off for the savings in a critical
resource such as storage requirements or data transmission time. Of course, only lossless
data compression is acceptable for files where the original data must be retained, including
text files, program files and numerical data files, but lossy data compression is frequently
acceptable in multimedia applications. In most applications, lossy data compression ratios
far exceed those possible with lossless compression.

Lossless data algorithms work by attempting to eliminate redundancies in the data.
For example, suppose that you have the following string of data:

0 5 5 7 3 2 0 0 0 0 1 4 7 3 2 9 1 0 0 0 0 0 6 6 8 2 7 3 2 7 3 2 . . .

There are two simple steps you could take to reduce this string. First, you could reduce
the amount of data by counting the strings of consecutive 0s, and maintaining the count
instead of the string. The character is reproduced once, followed by its count:

0 1 5 5 7 3 2 0 4 1 4 7 3 2 9 1 0 5 6 6 8 2 7 3 2 7 3 2 . . .

Notice that we actually had to add a character when the 0 appeared singly in the string.
Otherwise, the inverse algorithm would have assumed that the first 0 appeared five times
rather than recognizing the data to be a single 0 followed by a 5.

As a second step, the algorithm attempts to identify larger sequences within the string.
These can be replaced with a single, identifiable value. In the example string, the sequence
‘‘7 3 2’’ occurs repeatedly. Let us replace each instance of the sequence with the special
character ‘‘Z’’:

0 1 5 5 Z 0 3 1 4 Z 9 1 0 5 6 6 8 2 Z Z . . .

Application of these two steps has reduced the sample string by more than 35 percent.
A separate attachment to the data would identify the replacements that were made, so

124 PART TWO DATA IN THE COMPUTER

that the original data can be restored losslessly. For the example, the attachment would
indicate that 0s were replaced by a single 0 followed by their count and the sequences
‘‘7 3 2’’ were replaced by ‘‘Z.’’ You might wish to restore the original string in this example for
practice.

There are many variations on the methods shown in the example. You should also
notice that the second step requires advance access to the entire sequence of data to
identify the repetitive sequences. Thus, it is not useful with streaming data. There are other
variations that are based on the known properties of the data stream that can be used,
however. For example, MPEG-2 uses the knowledge that the image is repeated at a frame
rate of, say, thirty times per second, and that in most instances, very little movement occurs
within small parts of the image between consecutive frames. GIF images and ZIP files are
compressed losslessly.

Lossy algorithms operate on the assumption that some data can be sacrificed without
significant effect, based on the application and on known properties of human perception.
For example, it is known that subtle color changes will not be noticeable in the area of
an image where the texture is particularly vivid. Therefore, it is acceptable to simplify the
color data in this circumstance. There is no attempt to recover the lost data. The amount
of data reduction possible in a particular circumstance is determined experimentally. Lossy
algorithms can often reduce the amount of data by a factor of 10:1 or more. JPEG and MP3
are examples of lossy algorithms.

MPEG-2 uses both variations on both forms of compression simultaneously to achieve
compression ratios of 100:1 or more with very little noticeable degradation in image quality;
however, the compression process itself requires tremendous amounts of computing power.

Ongoing advances in data compression technology have resulted in improved perfor-
mance with existing compression techniques, as well as a number of new video formats,
including new versions of Microsoft’s Windows Media Video format and new formats
based on the MPEG-4 standard, as well as a new JPEG bitmap format, JP-2. As of this
writing, these formats have not yet achieved general acceptance, but there is much promise
for greatly improved video performance.

In general, the use of data compression is a trade-off between the use of processing
power and the need to reduce the amount of data for transmission and storage. In most cases,
the higher the compression ratio, the greater the demand upon the computer processing
resources. At some point, the incremental improvement in compression to be achieved will
no longer justify the additional cost in processing or the degradation of the result.

4.6 PAGE DESCRIPTION LANGUAGES
A page description language is a language that describes the layout of objects on a
displayed or printed page. (In this context we are using the word ‘‘object’’ in the more
general object-oriented programming language sense, rather than as a specific reference
to object images.) Page description languages incorporate various types of objects in
various data formats, including, usually, text, object images, and bitmap images. The page
description language provides a means to position the various items on the page. Most
page description languages also provide the capability to extend the language to include

CHAPTER 4 DATA FORMATS 125

new data formats and new objects using language stubs called plug-ins. Most audio and
video extensions fall into this category.

Some page description languages are extremely simple, with limited innate functional-
ity. HTML (HyperText Markup Language), for example, provides little more than a shell.
Except for text, most objects are stored in separate files, the details of layout are left mostly
to the Web browser that is recreating the page, and programming language capability and
other features are provided as extensions. We have already shown you many of the data
formats that are used with HTML. Others, such as PDF (Portable Document Format) and
PostScript offer the ability to recreate sophisticated pages with surprising faithfulness to
the intentions of the original page designer.

PDF, for example, incorporates its own bitmap formats, object image format, and text
format, all optimized for rapid page creation and presentation. It is often difficult to extract
data in their original data formats from a PDF file. Interestingly, PDF does not provide
programming language features. Instead, PDF is treated as a file format. The file contains
objects, along with page positioning information for each object, and that’s about it. It is
presumed that any program execution required to preprocess the objects in the file for
presentation was done prior to the creation of the file.

PostScript, on the other hand, contains a full-featured programming language that
can be processed at display time. In that sense, PDF is something of a subset of PostScript,
though with somewhat different goals and strengths. Many of the features of PDF are
derived from postprocessed PostScript. In particular, the object image descriptions in PDF
are based on the PostScript formats shown as examples earlier in this chapter.

4.7 INTERNAL COMPUTER DATA FORMAT
So now you have an idea of the various forms that data takes when it reaches the computer.
Once inside the computer, however, all data is simply stored as binary numbers of various
sizes, ranging from 1 to 8 bits, or even larger. The interpretation of these binary numbers
depends upon two factors:

■ The actual operations that the computer processor is capable of performing
■ The data types that are supported by the programming language used to create

the application program

As you will see in later chapters, computer processors provide instructions to manip-
ulate data, for searching and sorting, for example, and to manipulate and perform basic
mathematical operations on signed and unsigned integers. They also provide a means to
point to data, using a stored binary value as a pointer or locator to another stored binary
number. Since these pointer values are themselves stored as numbers, they can also be
manipulated and used in calculations. A pointer value might represent the index in an
array, for example. Most recent computers also provide instructions for the direct manip-
ulation of floating point, or real, numbers. In other computers, floating point numbers are
manipulated using software procedures.

The processor instruction set also establishes formats for each data type that it
supports. If a number in the computer is supposed to be a floating point number, for

126 PART TWO DATA IN THE COMPUTER

example, the instructions are designed to assume that the number is laid out in a particular
format. Specific formats that are used for integer and real numbers are discussed in
Chapter 5.

Thus, the raw binary numbers stored in a computer can easily be interpreted to
represent data of a variety of different types and formats. C, Java, Visual Basic, and other
languages all provide a programmer with the capability to identify binary data with a
particular data type. Typically, there are five different simple data types:

■ Boolean: two-valued variables or constants with values of true or false.
■ char: the character data type. Each variable or constant holds a single alpha-

numeric character code representing, for example, the single strike of a key. It is
also common to process groups of characters together as strings. Strings are
simply arrays of individual characters. The ASC function in Visual Basic shows
the actual binary number code representing a particular character. Thus,
ASC(‘‘A’’) would show a different value on an ASCII-based system from that
shown on an EBCDIC system.

■ enumerated data types: user-defined simple data types, in which each possible
value is listed in the definition, for example,

type DayOfWeek = Mon, Tues, Wed, Thurs, Fri, Sat

■ integer: positive or negative whole numbers. The string of characters representing
a number is converted internally by a conversion routine built into the program
by the compiler and stored and manipulated as a numerical value.

■ real or float: numbers with a decimal portion, or numbers whose magnitude,
either small or large, exceeds the capability of the computer to process and store
as an integer. Again, the routine to convert a string of characters into a real
number is built into the program.

In addition to the simple data types, many programming languages, including C, but
not Java, support an explicit pointer variable data type. The value stored in a pointer variable
is a memory address within the computer. Other, more complex, data types, structures,
arrays, records, and other objects, for example, are made up of combinations of the simple
data types.

The data types just listed correlate rather well with the instruction set capability of
the processor. The integer and real types can be processed directly. The character type is
translated into instructions that manipulate the data for basic character operations that
are familiar to you from your programming classes. Boolean and enumerated data types
are treated within the computer in a manner similar to integers. Most programming
languages do not accept Boolean and enumerated data as input, but the conversion
would be relatively straightforward. It would only be necessary to test the input character
string against the various possibilities, and then set the value to the correct choice
(see Exercise 4.10).

Other languages may support a completely different set of data types. There are even
some languages that don’t recognize any data types explicitly at all, but simply treat data in
a way appropriate to the operation being performed.

CHAPTER 4 DATA FORMATS 127

Numerical Character to Integer Conversion

EXAMPLE
As you’ve already seen, the typical high-level language numerical input statement

READ (value)

where value is the name of an integer variable, requires a software conversion from the actual
input, which is alphanumeric, to the numerical form specified for value. This conversion is
normally provided by program code contributed by the language compiler that becomes part
of your program. Some programmers choose instead to accept the input data in character
form and include their own code to convert the data to numerical form. This allows more
programmer control over the process; for example, the programmer might choose to provide
more extensive error checking and recovery than that of the internal conversion program.
(Many internal conversion programs simply crash if the user inputs an illegal character, say,
a letter when a numeral is expected.)

Whether internal or programmer supplied, the conversion process is similar. Just to
deepen your understanding of the conversion process, Figure 4.20 contains a simple

FIGURE 4.20

A Pseudocode Procedure that Performs String Conversion

//variables used
char key;
int number = 0;
boolean error, stop;
{
 stop = false;
 error = false;
 ReadAKey;
 while (NOT stop && NOT error) {
 number = 10 * number + (ASCIIVALUE(key) - 48);
 ReadAKey;
 } //end while
 if (error == true) {
 printout('Illegal Character in Input');
 else printout('input number is ' number);
 } //end if
} //end procedure

function ReadAKey(); {
 read(key);
 if (ASCIIVALUE(key) == 13 or ASCIIVALUE(key) == 32 or ASCIIVALUE(key) == 44)
 stop = true;
 else if ((key < '0') or (key > '9')) error = true;
} //end function ReadAKey

128 PART TWO DATA IN THE COMPUTER

pseudocode procedure that converts the string representing an unsigned integer into numer-
ical form. This code contains simple error checking and assumes that the number ends with
a space (ASCII 32), a comma (ASCII 44), or a carriage return (ASCII 13).

Conversion procedures for other data types are similar.

SUMMARY AND REVIEW
Alphanumeric data inputs and outputs are represented as codes, one code for each data
value. Three commonly used code systems for interactive input and output are Unicode,
ASCII, and EBCDIC. Within these codes, each character is represented by a binary number,
usually stored 1 or 2 bytes per character.

The design and choice of a code is arbitrary; however, it is useful to have a code in
which the collating sequence is consistent with search and sort operations in the language
represented. Within the computer, programs must be aware of the code used to assure that
data sorts, number conversions, and other types of character manipulation are handled
correctly. There must also be agreement between input and output devices, so that the
data is displayed correctly. If necessary, translation programs can be used to translate from
one representation to another. When necessary, conversion programs within the computer
convert the alphanumeric character strings into other numeric forms. Numeric data must
be converted back to Unicode, ASCII, or EBCDIC form for output display, however. The
most common source of alphanumeric data is the keyboard.

Data from a keyboard enters the computer in the form of a character stream, which
includes nonprinting characters as well as printing characters. Image scanning with optical
character recognition, voice input, and various special devices, such as bar code readers,
can also be used to create alphanumeric data.

There are two different methods used for representing images in the computer. Bitmap
images consist of an array of pixel values. Each pixel represents the sampling of a small area
in the picture. Object images are made up of simple geometrical elements. Each element is
specified by its geometric parameters, its location in the picture, and other details.

Within the constraint that object images must be constructed geometrically, they are
more efficient in storage and more flexible for processing. They may be scaled, rotated, and
otherwise manipulated without loss of shape or detail. Images with texture and shading,
such as photographs and painting, must be stored in bitmap image form. Generally, images
must be printed and displayed as bitmaps, so object images are converted to bitmap form
by a page description language interpreter before printing or display. There are many
different formats used for storing graphical images.

Video images are difficult to manage because of the massive amounts of data involved.
Video may be stored local to the system, or may be streamed from a network or website.
The quality of streamed video is limited by the capability of the network connection.
Higher quality is possible with locally stored video data, but the processing requirements
are demanding. Some systems provide auxiliary hardware to process video.

CHAPTER 4 DATA FORMATS 129

Audio signals are represented in the computer by a sequence of values created by
digitizing the signal. The signal is sampled at regular time intervals. Each sample is then
converted to an equivalent binary value that is proportional to the amplitude of the
sample. Again, different formats are available for storing audio data, depending on the
application.

Audio signals may be streamed or stored locally. The requirements for audio trans-
mission and processing are far less stringent than for those of video.

For images, both still and video, as well as audio, data compression is often appropriate.
Lossless data compression allows complete recovery of the original noncompressed data.
Lossy data compression does not allow recovery of the original data, but is designed to be
perceived as sufficient by the user.

Page description languages combine the characteristics of various specific data formats
together with data indicating the position on the page to create data formats that can be
used for display and printing layouts.

Internally, all data, regardless of use, are stored as binary numbers. Instructions in the
computer support interpretation of these numbers as characters, integers, pointers, and in
many cases, floating point numbers.

FOR FURTHER READING
The general concepts of data formats are fairly straightforward, but additional character-
based exercises and practice can be found in the Schaum outline [LIPS82]. Individual
codes can be found in many references. The actual characters mapped to the keyboard are
directly observable using the Character Map accessory in Windows or the Key Caps desk
accessory on the Macintosh. Extensive information about Unicode is available from the
Unicode website at www.unicode.org.

For graphics formats, there are a number of good general books on graphics. Most of
these books describe the difference between bitmap and object graphics clearly, and most
also discuss some of the different graphics file formats, and the trade-offs between them.
Additionally, there are more specialized books that are often useful in this area. Murray and
Van Ryper [MURR96] provide a detailed catalog of graphics formats. Rimmer [RIMM93]
discusses bitmapped graphics at length.

Smith [SMIT90] presents an easy approach to the PostScript language. The three
Adobe books—[ADOB93], [ADOB99], and [ADOB85], often called the ‘‘green book’’,
the ‘‘red book’’, and the ‘‘blue book’’, respectively—are detailed but clear explanations of
PostScript. Adobe also offers the PDF Reference [ADOB06]. A simple introduction to PDF
is the PDF Primer White Paper [PDFP05].

There are many books on various aspects of digital sound, but most are hard to read;
the Web is a better resource. Similarly, new data formats of all types occur as the need
arises. Because the need seems to arise continuously nowadays, your best source of current
information is undoubtedly the Web.

130 PART TWO DATA IN THE COMPUTER

KEY CONCEPTS AND TERMS

A-to-D converter
alphanumeric data
ANSI
ASCII
bitmap or raster image
collating sequence
control code
EBCDIC
font
glyph
Graphics Interchange

Format (GIF)
graphical objects

JPEG format
lossless data compression
lossy data compression
metadata
MP3
MPEG-2, MPEG-4
numeric character versus

number
object or vector image
optical character

recognition (OCR)
page description language
palette

phoneme
pixel
PostScript language
plug-ins
proprietary format
resolution
RFID (radio frequency

identification)
scan code
stream, character
streaming (video)
Unicode

READING REVIEW QUESTIONS
4.1 When data is input to a computer, it is nearly always manipulated and stored

in some standard data format. Why is the use of data standards considered
important, or indeed, crucial in this case?

4.2 Name the three standards in common use for alphanumeric characters. Which
standard is designed to support all of the world’s written languages? Which
language is used primarily with legacy programs that execute on mainframe
computers?

4.3 What is the relationship between the ASCII Latin-1 character set and its Unicode
equivalent that makes conversion between the two simple?

4.4 What is a collating sequence?

4.5 Name at least four alternative devices that can be used as sources of alphanumeric
character input data.

4.6 What are the major characteristics of a bitmap image? What are the major
characteristics of an object or vector image? Which is used for displays? What types
of images must be stored and manipulated as bitmap images? Why?

4.7 What is image metadata? Give an at least three examples of metadata that would
be required for a bitmap image.

4.8 Name two advantages to the use of object images.

4.9 Explain briefly how an A-to-D converter converts audio data into binary data.

4.10 Describe briefly the most important characteristics and features of an MP3 audio
file.

4.11 Explain the difference between lossless and lossy data compression. Which type
normally provides a smaller file? What is ‘‘lost’’ in lossy audio data compression?
Under what circumstances is it impossible to use lossy data compression?

CHAPTER 4 DATA FORMATS 131

4.12 What is a page description language? Give an example of a page description
language.

4.13 Name five simple data types that are provided in most high-level programming
languages.

4.14 Explain the difference between numeric characters and numbers. Under what
conditions would you expect the computer to use numeric characters? When
would you expect the computer to use numbers? When numeric data is entered
at the keyboard, which form is used? Which form is used for calculations? Which
form is used for display?

EXERCISES
4.1 a. Create a table that shows the ASCII and EBCDIC representations side-by-side

for each of the uppercase letters, lowercase letters, and numerals.

b. Does the hexadecimal representation show you a simple method for con-
verting individual numeric characters into their corresponding numerical
values?

c. Does the hexadecimal representation suggest a simple method for changing
lowercase letters into their corresponding capital letters?

d. Can you use the same methods for EBCDIC as you do for ASCII? If so, what
changes would you need to make in a program to make (b) and (c) work?

4.2 a. What is the ASCII representation for the numeral −3.1415 in binary? in
octal? in hexadecimal? in decimal?

b. What is the EBCDIC representation for the numeral +1,250.1? (Include the
comma.)

4.3 What character string does the binary ASCII code

1010100 1101000 1101001 1110011 0100000 1101001 1110011
0100000 1000101 1000001 1010011 1011001 0100001

represent?

4.4 ASCII, Unicode, and EBCDIC are, of course, not the only possible codes. The
Sophomites from the planet Collegium use the rather strange code shown in
Figure E4.1. There are only thirteen characters in the Sophomite alphabet, and
each character uses a 5-bit code. In addition, there are four numeric digits, since
the Sophomites use base 4 for their arithmetic.

a. Given the following binary code, what is the message being sent by the
Sophomites?

11001110100000111111000000100110111111110111110000000100100

b. You noticed in part (a) that this code does not delimit between characters.
How does one delimit this code? Suppose a bit was dropped during trans-
mission. What happens? Suppose a single bit was altered (0 to 1 or 1 to 0).
What happens?

132 PART TWO DATA IN THE COMPUTER

FIGURE E4.1

. .

00001
00010
00100
01000
01011
01101
01110

10000
10011
10101
10110
11001
11010

11111000
11111011
11111101
11111110

4.5 As an alternative alphanumeric code, consider a code where punched holes in the
columns of a card represent alphanumeric codes. The punched hole represents a
‘‘1’’; all other bits are ‘‘0’’. The Hollerith code shown in Figure E4.2 is an example
of such a code. This code has been used to represent a message on the card in
Figure E4.3. Each row represents a code level from 0 to 12. Levels 12 and 11, which
are not labeled on the card, are the top row and next-to-top rows, respectively.
Each column represents a single character, so the card can hold one eighty-column
line of text. (This card, prevalent in the 1960s and 1970s as a means of data input,
is the reason that text-based displays are still limited to eighty characters per line.)
Translate the card in Figure E4.3.

4.6 Without writing a program, predict the ORD value for your computer system for
the letter ‘‘A,’’ for the letter ‘‘B,’’ for the letter ‘‘C.’’ How did you know? Might the
value be different on a different system? Why or why not?

4.7 Write a program in your favorite language that will convert all ASCII uppercase
and lowercase letters to EBCDIC code. For an additional challenge, also convert
the punctuation symbols, indicating with a failure-to-convert message, those
symbols that are not represented in the EBCDIC system.

FIGURE E4.2

A
B
C
D
E
F
G
H
I
J
K

12,1
12,2
12,3
12,4
12,5
12,6
12,7
12,8
12,9
11,1
11,2

Character
Punched

code

L
M
N
O
P
Q
R
S
T
U
V

11,3
11,4
11,5
11,6
11,7
11,8
11,9
0,2
0,3
0,4
0,5

Character
Punched

code

W
X
Y
Z
0
1
2
3
4
5
6

0,6
0,7
0,8
0,9
0
1
2
3
4
5
6

Character
Punched

code

7
8
9
&
-
/
#
@
‘
=
.

7
8
9

12
11
0,1
8,3
8,4
8,5
8,6

12,8,3

Character
Punched

code

<
(
+
$
*
)
,
%

blank

12,8,4
12,8,5
12,8,6
11,8,3
11,8,4
11,8,5
0,8,3
0,8,4
none

Character
Punched

code

CHAPTER 4 DATA FORMATS 133

FIGURE E4.3

0
1

1

2

3

4

5

6

7

8

9
1

0
2

1

2

3

4

5

6

7

8

9
2

0
3

1

2

3

4

5

6

7

8

9
3

0
4

1

2

3

4

5

6

7

8

9
4

0
5

1

2

3

4

5

6

7

8

9
5

0
6

1

2

3

4

5

6

7

8

9
6

0
7

1

2

3

4

5

6

7

8

9
7

0
8

1

2

3

4

5

6

7

8

9
8

0
9

1

2

3

4

5

6

7

8

9
9

0
10

1

2

3

4

5

6

7

8

9
10

0
11

1

2

3

4

5

6

7

8

9
11

0
12

1

2

3

4

5

6

7

8

9
12

0
13

1

2

3

4

5

6

7

8

9
13

0
14

1

2

3

4

5

6

7

8

9
14

0
15

1

2

3

4

5

6

7

8

9
15

0
16

1

2

3

4

5

6

7

8

9
16

0
17

1

2

3

4

5

6

7

8

9
17

0
18

1

2

3

4

5

6

7

8

9
18

0
19

1

2

3

4

5

6

7

8

9
19

0
20

1

2

3

4

5

6

7

8

9
20

0
21

1

2

3

4

5

6

7

8

9
21

0
22

1

2

3

4

5

6

7

8

9
22

0
23

1

2

3

4

5

6

7

8

9
23

0
24

1

2

3

4

5

6

7

8

9
24

0
25

1

2

3

4

5

6

7

8

9
25

0
26

1

2

3

4

5

6

7

8

9
26

0
27

1

2

3

4

5

6

7

8

9
27

0
28

1

2

3

4

5

6

7

8

9
28

0
29

1

2

3

4

5

6

7

8

9
29

0
30

1

2

3

4

5

6

7

8

9
30

0
31

1

2

3

4

5

6

7

8

9
31

0
32

1

2

3

4

5

6

7

8

9
32

0
33

1

2

3

4

5

6

7

8

9
33

0
34

1

2

3

4

5

6

7

8

9
34

0
35

1

2

3

4

5

6

7

8

9
35

0
36

1

2

3

4

5

6

7

8

9
36

0
37

1

2

3

4

5

6

7

8

9
37

0
38

1

2

3

4

5

6

7

8

9
38

0
39

1

2

3

4

5

6

7

8

9
39

0
40

1

2

3

4

5

6

7

8

9
40

0
41

1

2

3

4

5

6

7

8

9
41

0
42

1

2

3

4

5

6

7

8

9
42

0
43

1

2

3

4

5

6

7

8

9
43

0
44

1

2

3

4

5

6

7

8

9
44

0
45

1

2

3

4

5

6

7

8

9
45

0
46

1

2

3

4

5

6

7

8

9
46

0
47

1

2

3

4

5

6

7

8

9
47

0
48

1

2

3

4

5

6

7

8

9
48

0
49

1

2

3

4

5

6

7

8

9
49

0
50

1

2

3

4

5

6

7

8

9
50

0
51

1

2

3

4

5

6

7

8

9
51

0
52

1

2

3

4

5

6

7

8

9
52

0
53

1

2

3

4

5

6

7

8

9
53

0
54

1

2

3

4

5

6

7

8

9
54

0
55

1

2

3

4

5

6

7

8

9
55

0
56

1

2

3

4

5

6

7

8

9
56

0
57

1

2

3

4

5

6

7

8

9
57

0
58

1

2

3

4

5

6

7

8

9
58

0
59

1

2

3

4

5

6

7

8

9
59

0
60

1

2

3

4

5

6

7

8

9
60

0
61

1

2

3

4

5

6

7

8

9
61

0
62

1

2

3

4

5

6

7

8

9
62

0
63

1

2

3

4

5

6

7

8

9
63

0
64

1

2

3

4

5

6

7

8

9
64

0
65

1

2

3

4

5

6

7

8

9
65

0
66

1

2

3

4

5

6

7

8

9
66

0
67

1

2

3

4

5

6

7

8

9
67

0
68

1

2

3

4

5

6

7

8

9
68

0
69

1

2

3

4

5

6

7

8

9
69

0
70

1

2

3

4

5

6

7

8

9
70

0
71

1

2

3

4

5

6

7

8

9
71

0
72

1

2

3

4

5

6

7

8

9
72

0
73

1

2

3

4

5

6

7

8

9
73

0
74

1

2

3

4

5

6

7

8

9
74

0
75

1

2

3

4

5

6

7

8

9
75

0
76

1

2

3

4

5

6

7

8

9
76

0
77

1

2

3

4

5

6

7

8

9
77

0
78

1

2

3

4

5

6

7

8

9
78

0
79

1

2

3

4

5

6

7

8

9
79

0
80

1

2

3

4

5

6

7

8

9
80

IBM

4.8 If you have access to a debug program, load a text file into computer memory
from your disk, and read the text from computer memory by translating the
ASCII codes.

4.9 Suppose you have a program that reads an integer, followed by a character, using
the following prompt and READ statement:

WRITE (‘Enter an integer and a character : ’)
READ (intval, charval);

When you run the program, you type in the following, in response to the prompt

Enter an integer and a character :
1257
z

When you check the value of charval, you discover that it does not contain ‘‘z.’’
Why not? What would you expect to find there?

4.10 Write a program that accepts one of the seven values ‘‘MON,’’ ‘‘TUE,’’ ‘‘WED,’’
‘‘THU,’’ ‘‘FRI,’’ ‘‘SAT,’’ and ‘‘SUN’’ as input and sets a variable named TODAY
to the correct value of type DayOfWeek, and then outputs the ORD value of
TODAY to the screen. (Does the ORD value give you a hint as to the internal
representation of the enumerated data type?)

4.11 Write a procedure similar to procedure Convert that converts a signed integer to
a character string for output.

4.12 Approximately how many pages of pure 16-bit Unicode text can a 650 MB
CD-ROM hold?

4.13 Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF, .PNG, and .BMP.

134 PART TWO DATA IN THE COMPUTER

4.14 Find a book or article that describes the various bitmapped graphics formats, and
compare .GIF and .RLE.
For Exercises 4.13 and 4.14, there are several books that describe graphics formats
in detail. One of these is Murray [MURR96].

4.15 Investigate several audio formats, and discuss the different features that each
provides. Also discuss how the choice of features provided in different formats
affects the type of processing that the format would be useful for.

4.16 If you have studied COBOL, discuss the difference between numeric characters
and numbers in the context of a COBOL program. Does COBOL distinguish
clearly between the two? If so, in what ways?

4.17 Provide a line-by-line explanation for the PostScript code in Figure 4.14.

4.18 Unicode is downward compatible with the Latin-1 version of 8-bit ASCII in the
sense that a Unicode text file that is limited to the Latin-1 character set will be
read correctly on a system that does not support Unicode, provided that an end
delimiter is used, rather than a character count as the measure of the length of the
message. Why is this so? (Hint: Consider the role of the ASCII NUL character.)

4.19 Use the Web as a resource to investigate MPEG-2 [or MPEG-4]. Explain the data
compression algorithm used by MPEG-2 [or MPEG-4].

4.20 The MP3 audio format is described as ‘‘almost CD quality.’’ What characteristic
of MP3 makes this description accurate?

4.21 Use the Web as a resource to study the PDF format.

a. Describe how PDF provides output that is consistent across different types
of devices, including printers and monitors of various resolutions.

b. Describe the format for storing, laying out, and managing the objects on a
page. Explain the advantages to the use of this format over other formats,
such as that used by HTML.

c. Explain how PDF manages the many different type fonts that might be found
in a document.

d. How does PDF manage bitmap images? Object images?

e. Explain how PDF differs from PostScript.

f. Describe at least three major limitations that PDF places on the end-user of
a PDF document.

4.22 Using the Web as a resource, create a table that compares the features and
capabilities of .PNG, .GIF, and .JPEG.

CHAPTER 4 DATA FORMATS 135

