Representing Numerical Data

(Chapter 5)

Signed-Integer Representation:

- No obvious direct way to represent the sign in binary notation, options:
 - Sign-and-magnitude representation
 - 1's complement
 - 2's complement (most common)

Sign-and-Magnitude:

- Use left-most bit for sign
 - 0 = plus; 1 = minus
- Total range of integers the same
 - Half of integers positive; half negative
 - Magnitude of largest integer half as large
- Example using 8 bits:
 - Unsigned: 1111 1111 = +255
 - Signed: $0111 \ 1111 = +127$ and $1111 \ 1111 = -127$
 - Note: 2 values for 0: +0 (0000 0000) and -0 (1000 0000)
- Example: Solve the following problem 13 6 using the Sign and Magnitude method:

نضيف اصفار على يسار العدد لتكوين bits 4 او bits 8 بعد ذالك نضيف اشارة العدد () للموجب و 1 للسالب

- Unsigned: $13_{10} = 1101_2$ and $6_{10} = 110_2$
- Signed: $+13_{10} = 0(1101)_2$ and $-6_{10} = 1(0110)_2$
- Note we use addition: 13 = 0 1 1 0 1

$$+(-6) = 1 \quad 0 \quad 1 \quad 1 \quad 0$$

Now consider 6-5. Direct subtraction yields 0110-0101=0001. However, if we express it as 6+(-5) and carry out the addition, we have 0110+1101=10011 and so the 4-bit sum word is 0011 (due to the 4-bit word length). Since 0011 not equal 0001, the Requirement is not satisfied.

9's Complement:

- Taking the complement: subtracting a value from a standard basis value
- Decimal (base 10) system diminished radix complement
 - Radix minus 1 = 10 1 \rightarrow 9 as the basis
 - 3-digit example: base value = 999
 - Range of possible values 0 to 999 arbitrarily split at 500

- Example:
 - The sign-and-magnitude value of 3-digit number 899 in 9's complement representation is -100.
 - The sign-and-magnitude value of 3-digit number 170 in 9's complement representation is + 170.
- We can find the 9's Complement representation of a negative number by subtracting the number with $(10^n 1)$ where n = number of digits in the number.

- Example: Find the 9's Complement of -6! The number is only one digit therefore 9 6 = 3.
- Example: Solve the following problem 13 6 using 9's Complement representation:

هنا اخذنا بالاعتبار عدد خانات الرقم الاكبر 13 في المسائلة

- 9's Complement: +13 13 and -6 99 -6 = 93
- Note we use addition: 93

• If the result has more digits than specified, add carry to the result.

10's Complement:

- Based on 9's complement
- Example using 3-digit number
 - Note: 1000 = 999 + 1
 - 9's complement = 999 value
 - Rewriting 10's complement = 1000 value = 999 + 1 value
 - Or: 10's complement = 9's complement + 1

- Example:
 - The sign-and-magnitude value of 3-digit number 999 in 10's complement representation is -001.
 - The sign-and-magnitude value of 3-digit number 420 in 10's complement representation is +420.
- We can find the 10's Complement representation of a negative number by subtracting the number with (10^n) where n = number of digits in the number.

نشيك العدد مكون من كم خانه 3, 2, 1 و نطرح العدد من ,100, 100 , 1000

- Example: Find the 10's Complement of -6! The number is only one digit therefore 10 6 = 4.
- Example: Solve the following problem 13 6 using 10's Complement representation:

هنا اخذنا بالاعتبار عدد خانات الرقم الاكبر 13 في المسائلة

- 10's Complement: +13 \rightarrow 13 and -6 \rightarrow 100 6 = 94
- Note we use addition: 94

Example: Find the 10's Complement of 777! Negative number because first digit is 7. The number has 3-digits therefore 1000 - 777 = 223. Signed value = -223.

1's Binary Complement:

- In the 1's complement representation, a nonnegative number is represented in the same manner as an unsigned number.
- A negative number (-N) is represented by the 1's Binary Complement of the positive number N.
- The 1's Binary Complement of an n-bit number N is obtained by subtracting it from $2^n 1$
 - First find the binary number of N
 - Inversion: change 1's to 0's and 0's to 1s
 - Numbers beginning with 0 are positive
 - Numbers beginning with 1 are negative
 - 2 values for zero
- Example with 8-bit binary numbers

■ Example: Solve the following problem 13 – 6 using 1's Binary Complement representation:

Find the binary number: (13)₁₀=(1101)₂ and (6)₁₀=(0110)₂

1's Binary Complement: +13 → 1101 and −6 → 1001

• The result is $(0111)_2 = (7)_{10}$

2's Binary Complement:

- In the 2's binary complement representation, a nonnegative number is represented in the same manner as an unsigned number.
- A negative number (-N) is represented by 2's complement of the positive number N.
- The 2's Binary Complement of an n-bit number N is obtained by subtracting it from 2ⁿ
 - First find the binary number of N
 - 1's Binary Complement (change 1's to 0's and 0's to 1s)
 - Add 1 to 1's Binary Complement

- نحول الرقم العشري الى رقم الثنائي
- نبدل 0 بـ 1 و الـ 1 بـ 0 (1's complemnt) .
 - 1's complemnt لم نضيف 1 1's complemnt ا

• Example with 8-bit binary numbers

■ Example: Solve the following problem 13 – 6 using 2's Binary Complement representation:

Find the binary number: $(13)_{10}$ = $(1101)_2$ and $(6)_{10}$ = $(0110)_2$

نضيف اصفار على يسار العدد لتكوين bits او 8 bits

■ 1's Binary Complement: +13 ■ 1101 and -6 ■ 1001

2's Binary Complement: $+13 \rightarrow 1101$ and $-6 \rightarrow 1010$

1010 = 1001 + 0001

Note we use addition: 1 1 0 1

+1010

10111

لدينا 5 bits لذالك الـ 1 على اليسار يعتبر فائض لا يضاف للناتج

• The result is $(0111)_2 = (7)_{10}$

Exponential Notation:

- Also called scientific notation
 - 12345 12345 x 10⁰
 - 0.12345 x 10⁵ 123450000 x 10⁻⁴
- 4 specifications required for a number
 - 1. Sign ("+" in example)
 - 2. Magnitude or *mantissa* (12345)
 - 3. Sign of the exponent ("+" in 10⁵)
 - 4. Magnitude of the exponent (5)
- Plus
 - 5. Base of the exponent (10)
 - 6. Location of decimal point (or other base) radix point
- The number -0.0009876 can be represented as -0.9876×10^{-3}

Format Specification:

• Typical representation is using 8 digits: SEEMMMMM, Where:

Sign of the mantissa SEEMMMMM 2-digit Exponent 5-digit Mantissa

- Mantissa: sign digit in sign-magnitude format
- Assume decimal point located at beginning of mantissa
- Excess-N notation: Complementary notation
 - Pick middle value as offset where N is the middle value
 - The exponent is represented in Excess-50.
 - That means $EE=00=10^{-50}...$ $EE=48=10^{-2}$, $EE=49=10^{-1}$, $EE=50=10^{0}$, $EE=51=10^{1}$, $EE=52=10^{2}$, $EE=53=10^{3}$, $EE=99=10^{49}$

- SEEMMMMM= (+/-) .MMMMM x 10^{EE}
- Example:
 - $05324657 = +0.24657 \times 10^3 = +246.57$
 - $54810000 = -0.10000 \times 10^{-2} = -0.001$
 - $55555555 = -0.55555 \times 10^5 = -55555$
 - $04925000 = +0.25000 \times 10^{-1} = +0.025$

Addition and Subtraction in SEEMMMMM format:

- Example: Solve the following problem 05199520 + 04967850 using SEEMMMMM format with excess-50 notation and S=0 is (+) and S=5 is (-):
 - Add two floating point numbers: 05199520

قبل البداء في الجمع نبدل الأس الاصغر بالأس الآكبر و نضيف اصفار هنا غيرنا 49 الى 51 و اضفنا صغرين بعد الفاصلة لآن 2 =49-51

0 51 (1)0019850

- Carry requires right shift
 0 52 10019850
- The result is $05210019850 = +.10019850 \times 10^2$

• We can check our answers by converting the number to decimal:

نحول الارقام الى شكلها العشري

- $05199520 = +0.99521 \times 10^{1} = +9.9520$
- $04967850 = +0.67850 \times 10^{-1} = +0.067850$

+10.019850 +0.10019850 x 10² 05210019850

الإجابة صحيحة

Multiplication and Division in SEEMMMMM format:

- Example: Solve the following problem 05199520 x 04967850 using SEEMMMMM format with excess-50 notation and S=0 is (+) and S=5 is (-):
 - Multiply two floating point numbers: 05220000 x 04712500
 - Add exponents, subtract offset: 52 + 47 50 = 49
 - Multiply mantissas 0.20000 x 0.12500 = 0.025000000
 - Normalize the result 04825000